A361236 Array read by antidiagonals: T(n,k) is the number of noncrossing k-gonal cacti with n polygons up to rotation.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 5, 11, 1, 1, 1, 1, 8, 33, 49, 1, 1, 1, 1, 9, 63, 230, 204, 1, 1, 1, 1, 12, 105, 664, 1827, 984, 1, 1, 1, 1, 13, 159, 1419, 7462, 15466, 4807, 1, 1, 1, 1, 16, 221, 2637, 21085, 90896, 137085, 24739, 1
Offset: 0
Examples
===================================================== n\k | 1 2 3 4 5 6 ... ----+------------------------------------------------ 0 | 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 ... 2 | 1 1 1 1 1 1 ... 3 | 1 4 5 8 9 12 ... 4 | 1 11 33 63 105 159 ... 5 | 1 49 230 664 1419 2637 ... 6 | 1 204 1827 7462 21085 48048 ... 7 | 1 984 15466 90896 334707 941100 ... 8 | 1 4807 137085 1159587 5579961 19354687 ... 9 | 1 24739 1260545 15369761 96589350 413533260 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals).
- Wikipedia, Cactus graph.
- Index entries for sequences related to cacti.
Crossrefs
Programs
-
PARI
\\ here u is Fuss-Catalan sequence with p = 2*k-1. u(n,k,r) = {r*binomial(n*(2*k-1) + r, n)/(n*(2*k-1) + r)} T(n,k) = if(n==0, 1, u(n, k, 1)/((k-1)*n+1) + sumdiv(gcd(k,n-1), d, if(d>1, eulerphi(d)*u((n-1)/d, k, 2*k/d)/k)))
Formula
T(0,k) = T(1,k) = T(2,k) = 1.
Comments