cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361263 Numbers of the form k*(k^5 +- 1)/2.

Original entry on oeis.org

0, 1, 31, 33, 363, 366, 2046, 2050, 7810, 7815, 23325, 23331, 58821, 58828, 131068, 131076, 265716, 265725, 499995, 500005, 885775, 885786, 1492986, 1492998, 2413398, 2413411, 3764761, 3764775, 5695305, 5695320, 8388600, 8388616, 12068776, 12068793, 17006103, 17006121, 23522931, 23522950
Offset: 1

Views

Author

Thomas Scheuerle, Mar 06 2023

Keywords

Comments

Integer solutions of x + y = (x - y)^6. If x = a(n) then y = a(n - (-1)^n).

Crossrefs

Programs

  • Maple
    map(k -> (k*(k^5-1)/2, k*(k^5+1)/2), [$1..100]);
  • PARI
    concat(0, Vec(x^2*(1+30*x-4*x^2+150*x^3+6*x^4+150*x^5-4*x^6+30*x^7+x^8)/((1-x)^7*(1+x)^6) + O(x^100)))
    
  • Python
    def A361263(n): return (k:=n+1>>1)*(k**5+1-((n&1)<<1))>>1 # Chai Wah Wu, Mar 22 2023

Formula

G.f.: x^2*(1+30*x-4*x^2+150*x^3+6*x^4+150*x^5-4*x^6+30*x^7+x^8) / ((1-x)^7*(1+x)^6).
a(n) = a(n-1) + 6*a(n-2) - 6*a(n-3) - 15*a(n-4) + 15*a(n-5) + 20*a(n-6) - 20*a(n-7) - 15*a(n-8) + 15*a(n-9) + 6*a(n-10) - 6*a(n-11) - a(n-12) + a(n-13).