A361275 Number of 1423-avoiding even Grassmannian permutations of size n.
1, 1, 1, 3, 5, 11, 17, 29, 41, 61, 81, 111, 141, 183, 225, 281, 337, 409, 481, 571, 661, 771, 881, 1013, 1145, 1301, 1457, 1639, 1821, 2031, 2241, 2481, 2721, 2993, 3265, 3571, 3877, 4219, 4561, 4941, 5321, 5741, 6161, 6623, 7085, 7591, 8097, 8649, 9201, 9801, 10401
Offset: 0
Examples
For n=4 the a(4) = 5 permutations are 1234, 1342, 2314, 3124, 3412.
Links
- Juan B. Gil and Jessica A. Tomasko, Pattern-avoiding even and odd Grassmannian permutations, arXiv:2207.12617 [math.CO], 2022.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Programs
-
Maple
seq(1 - 5*n/24 + n^3/12 - (-1)^n * n/8, n = 0 .. 100); # Robert Israel, Mar 10 2023
Formula
G.f.: -(x^5-x^4-4*x^3+2*x^2+x-1)/((x+1)^2*(x-1)^4).
a(n) = 1 - 5*n/24 + n^3/12 - (-1)^n * n/8. - Robert Israel, Mar 10 2023
Comments