A361284 Number of unordered triples of self-avoiding paths whose sets of nodes are disjoint subsets of a set of n points on a circle; one-node paths are not allowed.
0, 0, 0, 0, 0, 15, 420, 7140, 95760, 1116990, 11891880, 118776900, 1132182480, 10415938533, 93207174060, 815777235000, 7011723045600, 59364660734172, 496238466573648, 4102968354298200, 33602671702168800, 272909132004479355, 2200084921469527092, 17618774018675345340, 140252152286127750000
Offset: 1
Examples
a(7) = A359404(7) + 7*A359404(6) = 315 + 7*15 = 420 since either all the 7 points are used or one is not.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Ivaylo Kortezov, Sets of Paths between Vertices of a Polygon, Mathematics Competitions, Vol. 35 (2022), No. 2, ISSN:1031-7503, pp. 35-43.
Crossrefs
Programs
-
PARI
a(n) = {(n*(n-1)*(n-2)/384) * (7^(n-3) - 3*5^(n-3) + 3^(n-2) - 1)} \\ Andrew Howroyd, Mar 07 2023
Formula
a(n) = (n*(n-1)*(n-2)/384)*(7^(n-3) - 3*5^(n-3) + 3^(n-2) - 1).
E.g.f.: x^3*exp(x)*(exp(2*x) - 1)^3/384. - Andrew Howroyd, Mar 07 2023
Comments