cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361316 Numerators of the harmonic means of the infinitary divisors of the positive integers.

Original entry on oeis.org

1, 4, 3, 8, 5, 2, 7, 32, 9, 20, 11, 12, 13, 7, 5, 32, 17, 12, 19, 8, 21, 22, 23, 16, 25, 52, 27, 14, 29, 10, 31, 128, 11, 68, 35, 72, 37, 38, 39, 32, 41, 7, 43, 44, 3, 23, 47, 48, 49, 100, 17, 104, 53, 18, 55, 56, 57, 116, 59, 4, 61, 31, 63, 256, 65, 11, 67, 136
Offset: 1

Views

Author

Amiram Eldar, Mar 09 2023

Keywords

Examples

			Fractions begin with 1, 4/3, 3/2, 8/5, 5/3, 2, 7/4, 32/15, 9/5, 20/9, 11/6, 12/5, ...
		

Crossrefs

Similar sequences: A099377, A103339.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, 2/(1 + p^(2^(m - j))), 1], {j, 1, m}]]; a[1] = 1; a[n_] := Numerator[n * Times @@ f @@@ FactorInteger[n]]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), b); numerator(n * prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 2/(f[i, 1]^(2^(#b-k))+1), 1)))); }

Formula

a(n) = numerator(n*A037445(n)/A049417(n)).
a(n)/A361317(n) <= A099377(n)/A099378(n), with equality if and only if n is in A036537.
a(n)/A361317(n) >= A103339(n)/A103340(n), with equality if and only if n is in A138302.