A361340 a(n) = smallest number with the property that the split-and-multiply technique (see A361338) in base n can produce all n single-digit numbers.
15, 23, 119, 167, 12049, 424, 735, 907, 17117, 1250, 307747, 2703, 49225, 9422, 57823, 5437, 2076131, 7747, 639987, 44960, 822799, 11537, 23809465, 24967, 1539917, 109346, 4643181, 26357, 5587832443, 37440, 1885949, 285085, 7782015, 265806, 1250473675, 66524, 8340541, 699890, 158607997, 85684
Offset: 2
Examples
To reach the digits 0 though 9 in base 10 from 17117: 171*17 -> 290*7 -> 203*0 -> 0 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 373*1 -> 37*3 -> 1*11 -> 1*1 -> 1 171*17 -> 2*907 -> 1*814 -> 8*14 -> 1*12 -> 1*2 -> 2 1*7117 -> 711*7 -> 49*77 -> 377*3 -> 113*1 -> 1*13 -> 1*3 -> 3 171*17 -> 2*907 -> 1*814 -> 8*14 -> 11*2 -> 2*2 -> 4 1711*7 -> 1197*7 -> 837*9 -> 75*33 -> 247*5 -> 1*235 -> 23*5 -> 1*15 -> 1*5 -> 5 17*117 -> 19*89 -> 169*1 -> 16*9 -> 1*44 -> 4*4 -> 1*6 -> 6 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 37*31 -> 11*47 -> 51*7 -> 3*57 -> 17*1 -> 1*7 -> 7 17*117 -> 1*989 -> 98*9 -> 88*2 -> 1*76 -> 7*6 -> 4*2 -> 8 1*7117 -> 711*7 -> 49*77 -> 377*3 -> 113*1 -> 11*3 -> 3*3 -> 9
Links
- Zachary DeStefano and Tim Peters, Table of n, a(n) for n = 2..119
- Michael S. Branicky, Python program
- Michael De Vlieger, Plot of digit d in sequence S_n(m) in black at (x, y) = (m, d) for bases n = 2..12 as labeled, m = 1..1000, and digits d = 0..n-1, 12X exaggeration. This sequence shows the first occasion of a vertical black bar in base n.
- Zachary DeStefano and Tim Peters, Known terms and bounds
Programs
-
Mathematica
Table[Catch[Monitor[Do[(Set[c, Count[Union@Flatten[#], ?(# < b &)]]; If[c == b, Throw[i]]) &@ NestWhileList[Flatten@ Map[Function[w, Array[If[And[#[[-1, 1]] == 0, Length[#[[-1]]] > 1], Nothing, Times @@ Map[FromDigits[#, b] &, #]] &@ TakeDrop[w, #] &, Length[w] - 1]][IntegerDigits[#, b]] &, #] &, {i}, Length[#] > 0 &], {i, 0, Infinity}], {b, i, c}]], {b, 2, 6}] (* _Michael De Vlieger, Apr 04 2023, with Monitor to show progress *)
-
Python
from itertools import count from sympy.ntheory import digits from functools import lru_cache def fd(d, b): # from_digits return sum(di*b**i for i, di in enumerate(d[::-1])) @lru_cache(maxsize=None) def f(n, b): if n < b: return {n} s = digits(n, b)[1:] return {e for i in range(1, len(s)) if s[i]!=0 or i==len(s)-1 for e in f(fd(s[:i], b)*fd(s[i:], b), b)} def a(n, printat=False): return next(k for k in count(1) if len(f(k, n))==n) print([a(n) for n in range(2, 18)]) # Michael S. Branicky, Apr 04 2023
-
Python
# see link for a version that is faster and uses less memory
Extensions
a(21)-a(29) from Michael S. Branicky, Apr 04 2023
a(30)-a(41) from Zachary DeStefano, Apr 05 2023
Comments