A370279 Indices of record high values in A370278.
2, 3, 23, 118, 217, 611, 1299, 1949, 3331, 4403
Offset: 1
Examples
The 118th index of A370278 is the first occurrence of the value 3 in that sequence. All prior values are 0, 1, or 2.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Zachary DeStefano's wiki page.
Zachary DeStefano has authored 10 sequences.
The 118th index of A370278 is the first occurrence of the value 3 in that sequence. All prior values are 0, 1, or 2.
For n = 6, floor(k^(2/3)) = 3, but for all triples (a_1, a_2, a_3), there is a choice of p such that |p*a_1| mod 6, |p*a_2| mod 6, and |p*a_3| mod 6 are all smaller than or equal to 2. For example, consider the triple (1, 2, 3), with p = 2; we have: |2 * 1| mod 6 = 2, |2 * 2| mod 6 = 2, and |2 * 3| mod 6 = 0. Note that there is no nonzero choice of p such that all values are smaller than 2 for this triple.
For k = 14, floor(k^(2/3)) = 5. Given the triple (1, 3, 5), there is no choice of p such that |p| mod 14, |3p| mod 14, and |5p| mod 14 are all smaller than 5. p = 1, 3, 5, 9, 11, and 13 results in a simultaneous minimum of 5.
The first few examples where a(n) increases are {1}, {1,4}, {1,4,6}, and {1,4,6,7}.
To reach the digits 0 though 9 in base 10 from 17117: 171*17 -> 290*7 -> 203*0 -> 0 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 373*1 -> 37*3 -> 1*11 -> 1*1 -> 1 171*17 -> 2*907 -> 1*814 -> 8*14 -> 1*12 -> 1*2 -> 2 1*7117 -> 711*7 -> 49*77 -> 377*3 -> 113*1 -> 1*13 -> 1*3 -> 3 171*17 -> 2*907 -> 1*814 -> 8*14 -> 11*2 -> 2*2 -> 4 1711*7 -> 1197*7 -> 837*9 -> 75*33 -> 247*5 -> 1*235 -> 23*5 -> 1*15 -> 1*5 -> 5 17*117 -> 19*89 -> 169*1 -> 16*9 -> 1*44 -> 4*4 -> 1*6 -> 6 1711*7 -> 1197*7 -> 837*9 -> 7*533 -> 37*31 -> 11*47 -> 51*7 -> 3*57 -> 17*1 -> 1*7 -> 7 17*117 -> 1*989 -> 98*9 -> 88*2 -> 1*76 -> 7*6 -> 4*2 -> 8 1*7117 -> 711*7 -> 49*77 -> 377*3 -> 113*1 -> 11*3 -> 3*3 -> 9
Table[Catch[Monitor[Do[(Set[c, Count[Union@Flatten[#], ?(# < b &)]]; If[c == b, Throw[i]]) &@ NestWhileList[Flatten@ Map[Function[w, Array[If[And[#[[-1, 1]] == 0, Length[#[[-1]]] > 1], Nothing, Times @@ Map[FromDigits[#, b] &, #]] &@ TakeDrop[w, #] &, Length[w] - 1]][IntegerDigits[#, b]] &, #] &, {i}, Length[#] > 0 &], {i, 0, Infinity}], {b, i, c}]], {b, 2, 6}] (* _Michael De Vlieger, Apr 04 2023, with Monitor to show progress *)
from itertools import count from sympy.ntheory import digits from functools import lru_cache def fd(d, b): # from_digits return sum(di*b**i for i, di in enumerate(d[::-1])) @lru_cache(maxsize=None) def f(n, b): if n < b: return {n} s = digits(n, b)[1:] return {e for i in range(1, len(s)) if s[i]!=0 or i==len(s)-1 for e in f(fd(s[:i], b)*fd(s[i:], b), b)} def a(n, printat=False): return next(k for k in count(1) if len(f(k, n))==n) print([a(n) for n in range(2, 18)]) # Michael S. Branicky, Apr 04 2023
# see link for a version that is faster and uses less memory
For n = 1, dimension 2n = 2, there are two Eulerian orientations (the cyclic ones). So a(1) = 2.
For n = 4 the a(4) = 22 solution, unique up to rotation, is: . o x x o x x x o o o x x o o o o x o o o o o o o x x x o o o o o o o x x x o o o o o o o x o o o o x x o o o x x x o x x o .
9177 = 21*437 = 57*161 = 69*133 which are all S-primes (A057948), and admits no other S-Prime factorizations. 4389 = (3*7)*(11*19) = (3*11)*(7*19) = (3*19)*(7*11); 3,7,11,19 are the smallest primes of the form 4k + 3.
\\ uses is(n) from A057948 isok(n) = sumdiv(n, d, (d<=n/d) && is(d) && is(n/d)) == 3; \\ Michel Marcus, May 01 2021
1449=9*161=21*69 which are all S-primes (A057948), and admits no other S-prime factorizations.
\\ uses is(n) from A057948 isok(n) = sumdiv(n, d, (d<=n/d) && is(d) && is(n/d)) == 2; \\ Michel Marcus, May 01 2021
153 = 9*17 which are both S-primes, and admits no other S-prime factorizations.
\\ uses is(n) from A057948 isok(n) = sumdiv(n, d, (d<=n/d) && is(d) && is(n/d)) == 1; \\ Michel Marcus, May 01 2021
Comments