A361350 A variant of A359143 which includes the intermediate terms before digits are deleted (see Comments for precise definition).
11, 112, 1124, 11248, 1124816, 2486, 248620, 4860, 486018, 48601827, 4860182736, 486018273645, 8601827365, 860182736546, 86018273654656, 8601827365465667, 860182736546566780, 601273654656670, 60127365465667064, -1273545704, -127354570438, -12735457043849, -1273545704384962, -127354570438496270, 1273545743849627, 127354574384962777, 12735457438496277791, 273545743849627779
Offset: 0
Examples
The digit strings for the initial terms are: 11, 112, 1124, 11248, 1124816, 2486, 248620, 4860, 486018, 48601827, 4860182736, 486018273645, 8601827365, 860182736546, 86018273654656, 8601827365465667, 860182736546566780, 601273654656670, 60127365465667064, 01273545704, 0127354570438, 012735457043849, 01273545704384962, 0127354570438496270, 1273545743849627, 127354574384962777, 12735457438496277791, 273545743849627779, ... The sequence itself is obtained by replacing the leading zeros by minus signs. For example, after the term 601273654656670, we first append its digit-sum 64, getting 60127365465667064. Since the leading digit 6 is present in 64, we cancel all the 6's, getting 01273545704. The corresponding term in the sequence is -1273545704.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), n = 1..10^3, showing negative terms in red.
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), n = 1..10^4, showing negative terms in red.
- Michael De Vlieger, Scatterplot of log_10(abs(a(n))), showing all terms, with negative terms in red.
Programs
-
Mathematica
a[1] = {1, 1}; nn = 28; Do[Which[ListQ[m], k = m; Clear[m], FreeQ[#3, #2], Set[k, #1~Join~#3], True, Set[k, #1~Join~#3]; Set[m, DeleteCases[#1~Join~#3, #2]]] & @@ {#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]]; Set[a[n], k], {n, 2, nn}]; Array[(1 - 2 Boole[First[#] == 0])*FromDigits@ # &@ a[#] &, nn] (* Michael De Vlieger, Mar 16 2023 *)
Extensions
More than the usual number of terms are shown in order to clarify the differences from A359143.
Comments