A361357 Triangle read by rows: T(n,k) is the number of noncrossing caterpillars with n edges and diameter k, 0 <= k <= n.
1, 0, 1, 0, 0, 3, 0, 0, 4, 8, 0, 0, 5, 30, 20, 0, 0, 6, 75, 144, 48, 0, 0, 7, 154, 595, 504, 112, 0, 0, 8, 280, 1848, 2896, 1536, 256, 0, 0, 9, 468, 4788, 12060, 11268, 4320, 576, 0, 0, 10, 735, 10920, 40700, 58760, 38480, 11520, 1280
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 0, 3; 0, 0, 4, 8; 0, 0, 5, 30, 20; 0, 0, 6, 75, 144, 48; 0, 0, 7, 154, 595, 504, 112; 0, 0, 8, 280, 1848, 2896, 1536, 256; 0, 0, 9, 468, 4788, 12060, 11268, 4320, 576; 0, 0, 10, 735, 10920, 40700, 58760, 38480, 11520, 1280; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Eric Weisstein's World of Mathematics, Caterpillar Graph.
- Wikipedia, Caterpillar tree.
Programs
-
PARI
T(n) = {my(f=x*y*(2 - x)/(1 - (3 + 2*y)*x + 3*x^2 - x^3), g = 1 + x*y + (x*y)^2*((3 - 2*x) + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); [Vecrev(p) | p<-Vec(g + O(x*x^n))]} { my(A=T(9)); for(i=1, #A, print(A[i])) }
Formula
T(n,2) = n + 1 for n >= 2.
G.f.: A(x,y) = 1 + x*y + (x*y)^2*((3 - 2*x) + (4 - 3*x + x^2)*F(x,y) + (1 + 2*x)*F(x,y)^2)/(1 - x)^2 where F(x,y) = x*y*(2 - x)/(1 - (3 + 2*y)*x + 3*x^2 - x^3).
Comments