cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361360 Number of nonequivalent noncrossing caterpillars with n edges up to rotation and relection.

Original entry on oeis.org

1, 1, 1, 3, 7, 28, 104, 448, 1886, 8212, 35556, 155124, 675897, 2950074, 12872294, 56188904, 245253691, 1070581703, 4673231521, 20399699635, 89048927767, 388718917440, 1696845506274, 7407120344070, 32333775400516, 141144364258374, 616127577376396
Offset: 0

Views

Author

Andrew Howroyd, Mar 10 2023

Keywords

Comments

The number of all noncrossing caterpillars with n edges is given by A361356.

Crossrefs

Cf. A296533 (noncrossing trees), A361356, A361358, A361359 (up to rotation only).

Programs

  • PARI
    G(x)={ my(f = x*(2 - x)/(1 - 5*x + 3*x^2 - x^3), g = 1 + x + x^2*(3 - 2*x + (4 - 3*x + x^2)*f + (1 + 2*x)*f^2)/(1 - x)^2); (intformal(g) - 3)/x/2 + x*subst((3 + 2*x*(3-x)*f)/(1-x)^2, x, x^2)/4 + subst(1/(1-x) + x*f/(1-x), x, x^2)/2}
    { Vec(G(x) + O(x^30)) }

Formula

G.f.: (1 - 4*x - 8*x^2 + 28*x^3 + 15*x^4 - 55*x^5 - 2*x^6 + 46*x^7 - 11*x^8 - 19*x^9 + 10*x^10 + 2*x^11 - 2*x^12)/((1 - x)^2*(1 + x)^2*(1 - 5*x + 3*x^2 - x^3)*(1 - 5*x^2 + 3*x^4 - x^6)).
a(n) = 5*a(n-1) + 4*a(n-2) - 34*a(n-3) + 7*a(n-4) + 63*a(n-5) - 30*a(n-6) - 46*a(n-7) + 31*a(n-8) + 13*a(n-9) - 14*a(n-10) + 3*a(n-12) - a(n-13) for n >= 13.