cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A259850 Numbers k such that k/phi(k) equals sigma(x)/x for some x<=k.

Original entry on oeis.org

1, 3, 8, 9, 14, 15, 16, 21, 26, 27, 28, 32, 40, 45, 50, 52, 56, 63, 64, 75, 80, 81, 98, 100, 104, 112, 128, 130, 135, 144, 147, 160, 162, 182, 189, 192, 196, 200, 208, 216, 224, 225, 243, 250, 255, 256, 260, 288, 310, 320, 324, 338, 364, 372, 375, 384, 392, 400
Offset: 1

Views

Author

Michel Marcus, Jul 07 2015

Keywords

Comments

This sequence is motivated by the fact that sigma(n)/n and n/phi(n) are both >= 1.
For the first few terms, we get these ratios: 1, 3/2, 2, 3/2, 7/3, 15/8, 2, ....
The ordered list of distinct values up to a given limit is:
up to 10^1: [1, 3/2, 2];
up to 10^2: [1, 3/2, 7/4, 15/8, 2, 13/6, 7/3, 5/2];
up to 10^3: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 2, 13/6, 7/3, 5/2, 91/36, 31/12, 85/32, 65/24, 35/12, 3, 31/10, 13/4];
up to 10^4: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 2, 13/6, 7/3, 5/2, 91/36, 31/12, 85/32, 65/24, 403/144, 1105/384, 35/12, 635/216, 2555/864, 3, 217/72, 127/42, 73/24, 31/10, 51/16, 13/4, 1651/504, 527/160, 403/120, 221/64, 7/2, 127/36, 217/60];
up to 10^5: [1, 3/2, 7/4, 15/8, 31/16, 255/128, 65535/32768, 2, 33/16, 267/128, 13/6, 7/3, 133/54, 5/2, 91/36, 31/12, 85/32, 21845/8192, 65/24, 11/4, 89/32, 403/144, 1105/384, 35/12, 635/216, 2555/864, 3, 217/72, 127/42, 73/24, 665/216, 595/192, 31/10, 19/6, 51/16, 77/24, 1397/432, 13/4, 1651/504, 527/160, 949/288, 403/120, 221/64, 7/2, 127/36, 511/144, 6851/1920, 217/60, 119/32];
tending towards the intersection of the 2 sets {sigma(n)/n} (A017665/A017666) and {n/phi(n)} (A109395/A076512).
If k is a term, then so are all numbers > k with the same set of prime factors as k. - Robert Israel, Mar 09 2023

Examples

			1/phi(1) = 1/1 = sigma(1)/1, so 1 is in the sequence.
3/phi(3) = 3/2 = sigma(2)/2, so 3 is in the sequence.
8/phi(8) = 2/1 = sigma(6)/6, so 8 is in the sequence.
		

Crossrefs

Primitive elements: A361363.

Programs

  • Maple
    R:= NULL: count:= 0: V:= {}:
    for k from 1 while count < 100 do
     V:= V union  {numtheory:-sigma(k)/k};
     if member(k/numtheory:-phi(k), V) then R:= R,k; count:= count+1 fi;
    od:
    R; # Robert Israel, Mar 08 2023
  • PARI
    lista(nn) = {vs = vector(nn, n, sigma(n)/n); ve = vector(nn, n, n/eulerphi(n)); vr = []; for (n=1, #ve, ven = ve[n]; for (m=1, n, if ((vs[m] == ven), print1(n, ", "); break);););}

Extensions

Name corrected by Michel Marcus, Nov 25 2020
Showing 1-1 of 1 results.