A361364 Number of 5-dimensional cubic lattice walks that start and end at origin after 2n steps, not touching origin at intermediate stages.
1, 10, 170, 6500, 332050, 19784060, 1296395700, 90616189800, 6637652225250, 503852804991500, 39337349077483420, 3142010167321271000, 255747325678297576100, 21150729618673827139000, 1773152567858996728205000, 150409554094012703302602000, 12890454660664800562838261250
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..503
- Jonathan Novak, Pólya's Random Walk Theorem.
Crossrefs
Programs
-
Mathematica
walk5d[n_] := Sum[(2 n)!/(i! j! k! l! (n - i - j - k - l)!)^2, {i, 0, n}, {j, 0, n - i}, {k, 0, n - i - j}, {l, 0, n - i - j - k}]; invertSeq[seq_] := CoefficientList[1 - 1/SeriesData[x, 0, seq, 0, Length[seq], 1], x]; invertSeq[Table[walk5d[n], {n, 0, 15}]]
Formula
G.f.: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^5 dt.
INVERTi transform of A169714.
Comments