A361386 Infinitary arithmetic numbers: numbers for which the arithmetic mean of the infinitary divisors is an integer.
1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 83, 84, 85, 86, 87, 89, 91
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, (1 + p^(2^(m - j)))/2, 1], {j, 1, m}]]; q[1] = True; q[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], q]
-
PARI
is(n) = {my(f = factor(n), b); denominator(prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], (f[i, 1]^(2^(#b-k))+1)/2, 1)))) == 1; }
Formula
6 is a term since the arithmetic mean of its infinitary divisors, {1, 2, 3, 6}, is 3 which is an integer.
Comments