cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321304 Triangle T(n,f): the number of bicolored connected cubic graphs on 2n vertices with f vertices of the first color.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 5, 5, 5, 2, 2, 5, 10, 31, 46, 63, 46, 31, 10, 5, 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19, 85, 490, 2382, 7011, 15199, 23405, 27336, 23405, 15199, 7011, 2382, 490, 85, 509, 4595, 27233, 101002, 268675, 523246, 776657, 882321, 776657, 523246, 268675, 101002, 27233, 4595, 509
Offset: 0

Views

Author

R. J. Mathar, Nov 03 2018

Keywords

Comments

These are connected, undirected, simple cubic graphs where each vertex has either the first or the second color. Row n has 2n+1 entries, 0<=f<=2n. The column f=0 (1, 0, 2, 5,...) counts the cubic graphs (A002851). The column f=1 (0, 1, 2, 10, 64, 490...) counts the rooted cubic graphs.

Examples

			The triangle starts:
0 vertices:   1;
2 vertices:   0,  0,   0;
4 vertices:   1,  1,   1,   1,   1;
6 vertices:   2,  2,   5,   5,   5,    2,   2;
8 vertices:   5, 10,  31,  46,  63,   46,  31,  10,   5;
10 vertices: 19, 64, 248, 542, 931, 1052, 931, 542, 248, 64, 19;
		

Crossrefs

Columns f=0, 1, 2 are A002851, A361407, A361408.
Row sums are A361403.
Central coefficients are A361406.
Cf. A294783 (bicolored trees), A321305 (signed edges), A361361 (not necessarily connected).

Formula

T(n,f) = T(n,2n-f).

Extensions

Terms a(49) and beyond from Andrew Howroyd, Mar 11 2023

A361407 Number of connected cubic graphs on 2n unlabeled vertices rooted at a vertex.

Original entry on oeis.org

0, 1, 2, 10, 64, 490, 4595, 51063, 657623, 9592204, 155630924, 2771922417, 53673859357, 1121581872170, 25143397213226, 601751140758134, 15310778492310274, 412656423154230159, 11743600063060974656, 351882591907696156959
Offset: 1

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Crossrefs

Column k=1 of A321304.

Formula

G.f.: B(x)/C(x) where B(x) is the g.f. of A361410 and C(x) is the g.f. of A005638.

A361411 Number of cubic graphs on 2n unlabeled vertices rooted at a pair of indistinguishable vertices.

Original entry on oeis.org

0, 1, 5, 33, 257, 2443, 27682, 363759, 5405697, 89134360, 1609418390, 31525697245, 665263778962, 15039817276939, 362579178545598, 9284375250749758, 251643492565059981, 7197256536139662143, 216621907269166632361, 6844093745422473471562
Offset: 1

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Crossrefs

Column k=2 of A361361.

A361406 Number of bicolored connected cubic graphs on 2n unlabeled vertices with n vertices of each color.

Original entry on oeis.org

1, 0, 1, 5, 63, 1052, 27336, 882321, 34455134, 1558650424, 80016369538, 4589908631503, 290839634055722, 20171917072658395, 1519875854413728667, 123616508830454828043, 10794216583730162449785, 1007179737486515827821590, 100007950522974604304016627, 10529173417583858651114779790, 1171605981584666223513790021758
Offset: 0

Views

Author

Andrew Howroyd, Mar 11 2023

Keywords

Comments

Adjacent vertices may have the same color.

Examples

			a(1) = 1 since the only cubic graph on 4 vertices is the complete graph. The bicolored graphs are indistinguishable whichever 2 vertices are colored in the first color.
		

Crossrefs

Central coefficients of A321304.
Showing 1-4 of 4 results.