cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361419 Numbers k such that there is a unique number m for which the sum of the aliquot infinitary divisors of m (A126168) is k.

Original entry on oeis.org

0, 6, 7, 9, 11, 18, 32, 44, 56, 62, 72, 82, 94, 96, 98, 102, 104, 110, 116, 122, 132, 136, 138, 146, 150, 152, 178, 180, 182, 210, 222, 226, 230, 236, 238, 242, 248, 252, 264, 272, 284, 292, 296, 304, 322, 332, 338, 342, 350, 356, 360, 374, 382, 390, 392, 404
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Comments

Numbers k such that A331973(k) = 1.

Crossrefs

Similar sequences: A057709, A357324.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++], {k, 1, max^2}]; -1 + Position[v, 1] // Flatten];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1)); for(i = 1, nmax+1, if(v[i] == 1, print1(i-1, ", "))); }

Formula

a(n) = A126168(A361420(n)).