cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361467 a(n) = A003961(n) * sigma(A003961(n)), where A003961 is fully multiplicative with a(p) = nextprime(p), and sigma is the sum of divisors function.

Original entry on oeis.org

1, 12, 30, 117, 56, 360, 132, 1080, 775, 672, 182, 3510, 306, 1584, 1680, 9801, 380, 9300, 552, 6552, 3960, 2184, 870, 32400, 2793, 3672, 19500, 15444, 992, 20160, 1406, 88452, 5460, 4560, 7392, 90675, 1722, 6624, 9180, 60480, 1892, 47520, 2256, 21294, 43400, 10440, 2862, 294030, 16093, 33516, 11400
Offset: 1

Views

Author

Antti Karttunen, Mar 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (q = NextPrime[p])^e * (q^(e+1) - 1) / (q - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 18 2023 *)
  • PARI
    A003961(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; \\ From A003961
    A361467(n) = { my(u=A003961(n)); (u*sigma(u)); };

Formula

Multiplicative with a(p^e) = q^e * (q^(e+1) - 1) / (q - 1), where q = nextPrime(p).
a(n) = A003961(n) * A003973(n).
a(n) = A064987(A003961(n)).