A361560 Number of labeled digraphs on [n] all of whose strongly connected components are complete digraphs.
1, 1, 4, 47, 1471, 115042, 21591817, 9455689609, 9464951556046, 21316993121024757, 106689322228222150243, 1174731578884501228621956, 28221161668500867009724237123, 1468937207982284446757761131062629, 164682046577167683717133576752582349216, 39562388056404531283767850863430043742371123
Offset: 0
Keywords
Links
- E. de Panafieu and S. Dovgal, Symbolic method and directed graph enumeration, arXiv:1903.09454 [math.CO], 2019.
- R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
- Wikipedia, Strongly connected component
Crossrefs
Programs
-
Mathematica
nn = 15; B[n_] := n! 2^Binomial[n, 2]; a[x_] := Exp[x] - 1; Table[B[n], {n, 0, nn}] CoefficientList[Series[1/Normal[Series[Exp[-(Exp[x] - 1)], {x, 0, nn}]] /. Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}], {z, 0, nn}], z]