A361551 Expansion of g.f. A(x) satisfying A(x) = Sum_{n>=0} d^n/dx^n (x^(5*n) * A(x)^n) / n!.
1, 5, 90, 2535, 93840, 4226355, 222038775, 13259599965, 884588496165, 65114097133590, 5239173990133060, 457392343670390700, 43064135370809341250, 4350264113638902544555, 469422682906897831519170, 53897717818214315584719430, 6561919113715122121302125775
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 5*x^4 + 90*x^8 + 2535*x^12 + 93840*x^16 + 4226355*x^20 + 222038775*x^24 + 13259599965*x^28 + ... + a(n)*x^(4*n) + ... where A(x) = 1 + (d/dx x^5*A(x)) + (d^2/dx^2 x^10*A(x)^2)/2! + (d^3/dx^3 x^15*A(x)^3)/3! + (d^4/dx^4 x^20*A(x)^4)/4! + (d^5/dx^5 x^25*A(x)^5)/5! + ... + (d^n/dx^n x^(5*n)*A(x)^n)/n! + ... Related series. Let B(x) = Series_Reversion(x - x^5*A(x)), which begins B(x) = x + x^5 + 10*x^9 + 195*x^13 + 5520*x^17 + 201255*x^21 + 8881551*x^25 + ... + A361311(n+1)*x^(4*n+1) + ... then A(x) = B'(x) and B(x) = x * exp( x^4*A(x) + (d/dx x^9*A(x)^2)/2! + (d^2/dx^2 x^14*A(x)^3)/3! + (d^3/dx^3 x^19*A(x)^4)/4! + (d^4/dx^4 x^24*A(x)^5)/5! + ... + (d^(n-1)/dx^(n-1) x^(5*n-1)*A(x)^n)/n! + ... ).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
nmax = 20; r = 5; s = 1; A[] = 0; Do[A[x] = D[Normal[InverseSeries[x - x^r*A[x]^s + O[x]^k]], x], {k, 1, (r-1)*(nmax+1)+r}]; Table[CoefficientList[A[x], x][[j]], {j, 1, (r-1)*(nmax+1), r-1}] (* Vaclav Kotesovec, Mar 16 2023 *)
-
PARI
{Dx(n, F) = my(D=F); for(i=1, n, D=deriv(D)); D} {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, Dx(m, x^(5*m)*A^(1*m)/m!)) +O(x^(4*n+1))); polcoeff(A, 4*n)} for(n=0, 25, print1(a(n), ", "))
-
PARI
/* Using series reversion (faster) */ {a(n) = my(A=1); for(i=1, n, A = deriv( serreverse(x - x^5*A^1 +O(x^(4*n+2))))); polcoeff(A, 4*n)} for(n=0, 25, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^(4*n) may be defined by the following.
(1) A(x) = Sum_{n>=0} d^n/dx^n x^(5*n) * A(x)^n / n!.
(2) A(x) = d/dx Series_Reversion(x - x^5*A(x)).
(3) B(x - x^5*A(x)) = x where B(x) = x * exp( Sum_{n>=1} d^(n-1)/dx^(n-1) x^(5*n-1) * A(x)^n / n! ) is the g.f. of A361311.
(4) a(n) = (4*n+1) * A361311(n+1) for n >= 0.
a(n) ~ c * 4^n * n! * n^((15*LambertW(1) - 3 + 5/(1 + LambertW(1)))/8) / LambertW(1)^n, where c = 0.438413009716541247480505206... - Vaclav Kotesovec, Mar 16 2023
Comments