A361550
Expansion of g.f. A(x,y) satisfying x*y = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x,y)^(3*n) - 1/A(x,y)^(3*n+1)), as a triangle read by rows.
Original entry on oeis.org
1, 0, 1, 0, 5, 1, 0, 18, 10, 1, 0, 55, 61, 20, 1, 0, 149, 290, 215, 35, 1, 0, 371, 1172, 1660, 555, 56, 1, 0, 867, 4212, 10311, 5850, 1254, 84, 1, 0, 1923, 13833, 54688, 47460, 17773, 2555, 120, 1, 0, 4086, 42262, 256815, 319409, 188300, 46844, 4810, 165, 1, 0, 8374, 121625, 1093790, 1864445, 1621116, 621915, 111348, 8505, 220, 1, 0, 16634, 332764, 4297370, 9717550, 11913160, 6557572, 1818022, 243795, 14290, 286, 1
Offset: 0
G.f.: A(x,y) = 1 + y*x + (5*y + y^2)*x^2 + (18*y + 10*y^2 + y^3)*x^3 + (55*y + 61*y^2 + 20*y^3 + y^4)*x^4 + (149*y + 290*y^2 + 215*y^3 + 35*y^4 + y^5)*x^5 + (371*y + 1172*y^2 + 1660*y^3 + 555*y^4 + 56*y^5 + y^6)*x^6 + (867*y + 4212*y^2 + 10311*y^3 + 5850*y^4 + 1254*y^5 + 84*y^6 + y^7)*x^7 + (1923*y + 13833*y^2 + 54688*y^3 + 47460*y^4 + 17773*y^5 + 2555*y^6 + 120*y^7 + y^8)*x^8 + (4086*y + 42262*y^2 + 256815*y^3 + 319409*y^4 + 188300*y^5 + 46844*y^6 + 4810*y^7 + 165*y^8 + y^9)*x^9 + (8374*y + 121625*y^2 + 1093790*y^3 + 1864445*y^4 + 1621116*y^5 + 621915*y^6 + 111348*y^7 + 8505*y^8 + 220*y^9 + y^10)*x^10 + ...
This triangle of coefficients T(n,k) of x^n*y^k in g.f. A(x,y) begins:
1;
0, 1;
0, 5, 1;
0, 18, 10, 1;
0, 55, 61, 20, 1;
0, 149, 290, 215, 35, 1;
0, 371, 1172, 1660, 555, 56, 1;
0, 867, 4212, 10311, 5850, 1254, 84, 1;
0, 1923, 13833, 54688, 47460, 17773, 2555, 120, 1;
0, 4086, 42262, 256815, 319409, 188300, 46844, 4810, 165, 1;
0, 8374, 121625, 1093790, 1864445, 1621116, 621915, 111348, 8505, 220, 1;
0, 16634, 332764, 4297370, 9717550, 11913160, 6557572, 1818022, 243795, 14290, 286, 1;
0, 32152, 871641, 15771148, 46148620, 77162284, 58002140, 23152872, 4811721, 499180, 23012, 364, 1;
...
-
{T(n,k) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(x*y - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) );
polcoeff(polcoeff(Ser(A),n,x),k,y)}
for(n=0, 12, for(k=0,n, print1(T(n,k), ", "));print(""))
A361552
Expansion of g.f. A(x) satisfying 2*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 2, 14, 84, 530, 3770, 29446, 240302, 2003914, 17024332, 147306448, 1294859540, 11524690228, 103605031978, 939357512086, 8580744729478, 78898896072996, 729661925134886, 6782435427053490, 63332055630823770, 593793935288453260, 5587934788557993846
Offset: 0
G.f.: A(x) = 1 + 2*x + 14*x^2 + 84*x^3 + 530*x^4 + 3770*x^5 + 29446*x^6 + 240302*x^7 + 2003914*x^8 + 17024332*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
2*x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
2*x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
(* Calculation of constant d: *) With[{k = 2}, 1/r /. FindRoot[{r^3*s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] * QPochhammer[s^2/r, r^2] / ((-1 + s)*(-1 + r*s)*(-r + s^2)*(-1 + r*s^2)) == k*r, 1/(-1 + s) + 1/(s*(-1 + r*s)) + (2*s)/(-r + s^2) - 2/(s - r*s^3) + (-QPolyGamma[0, -Log[r*s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s^2]/Log[r^2], r^2] + QPolyGamma[0, Log[s^2/r]/Log[r^2], r^2]) / (s*Log[r]) == 0}, {r, 1/10}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(2*x - sum(m=-#A, #A, x^(m*(3*m-1)/2) * Ser(A)^(3*m-1) * (x^m*Ser(A) - 1) ) , #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(2*x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361553
Expansion of g.f. A(x) satisfying 3*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 3, 24, 171, 1335, 11940, 115773, 1160901, 11901537, 124726644, 1332688035, 14455451526, 158660036535, 1758835084221, 19667067522966, 221573079684087, 2512635069594897, 28656903391830291, 328500210705228867, 3782806859877522522, 43738575934977450465
Offset: 0
G.f.: A(x) = 1 + 3*x + 24*x^2 + 171*x^3 + 1335*x^4 + 11940*x^5 + 115773*x^6 + 1160901*x^7 + 11901537*x^8 + 124726644*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
3*x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
3*x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
(* Calculation of constant d: *) With[{k = 3}, 1/r /. FindRoot[{r^3*s^3 * QPochhammer[r] * QPochhammer[1/(r*s^2), r^2] * QPochhammer[1/(r*s), r] * QPochhammer[s, r] * QPochhammer[s^2/r, r^2] / ((-1 + s)*(-1 + r*s)*(-r + s^2)*(-1 + r*s^2)) == k*r, 1/(-1 + s) + 1/(s*(-1 + r*s)) + (2*s)/(-r + s^2) - 2/(s - r*s^3) + (-QPolyGamma[0, -Log[r*s]/Log[r], r] + QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -Log[r*s^2]/Log[r^2], r^2] + QPolyGamma[0, Log[s^2/r]/Log[r^2], r^2]) / (s*Log[r]) == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 18 2024 *)
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3*x - sum(m=-#A, #A, x^(m*(3*m-1)/2) * Ser(A)^(3*m-1) * (x^m*Ser(A) - 1) ) , #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(3*x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A361554
Expansion of g.f. A(x) satisfying 4*x = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)).
Original entry on oeis.org
1, 4, 36, 296, 2732, 28980, 329996, 3872908, 46575260, 573472248, 7197096168, 91640952360, 1180636398320, 15364364313588, 201691201775092, 2667523242203932, 35510152549696208, 475424653523498396, 6397601663340197268, 86481499341290372804, 1173813146742741571560
Offset: 0
G.f.: A(x) = 1 + 4*x + 36*x^2 + 296*x^3 + 2732*x^4 + 28980*x^5 + 329996*x^6 + 3872908*x^7 + 46575260*x^8 + 573472248*x^9 + ...
where A = A(x) satisfies the doubly infinite sum
4*x = ... + x^12*(1/A^9 - A^8) + x^5*(1/A^6 - A^5) + x*(1/A^3 - A^2) + (1 - 1/A) + x^2*(A^3 - 1/A^4) + x^7*(A^6 - 1/A^7) + x^15*(A^9 - 1/A^10) + ... + x^(n*(3*n+1)/2) * (A(x)^(3*n) - 1/A(x)^(3*n+1)) + ...
also, by the Watson quintuple product identity,
4*x = (1-x)*(1-x*A)*(1-1/A)*(1-x*A^2)*(1-x/A^2) * (1-x^2)*(1-x^2*A)*(1-x/A)*(1-x^3*A^2)*(1-x^3/A^2) * (1-x^3)*(1-x^3*A)*(1-x^2/A)*(1-x^5*A^2)*(1-x^5/A^2) * (1-x^4)*(1-x^4*A)*(1-x^3/A)*(1-x^7*A^2)*(1-x^7/A^2) * ...
-
/* Using the doubly infinite series */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4*x - sum(m=-#A, #A, x^(m*(3*m-1)/2) * Ser(A)^(3*m-1) * (x^m*Ser(A) - 1) ) , #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
-
/* Using the quintuple product */
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff(4*x - prod(m=1, #A, (1 - x^m) * (1 - x^m*Ser(A)) * (1 - x^(m-1)/Ser(A)) * (1 - x^(2*m-1)*Ser(A)^2) * (1 - x^(2*m-1)/Ser(A)^2) ), #A-1) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments