A361561 Number of even middle divisors of n, where "middle divisor" means a divisor in the half-open interval [sqrt(n/2), sqrt(n*2)).
0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0
Offset: 1
Keywords
Examples
For n = 18 the middle divisor of 18 is [3]. There are no even middle divisors of 18 so a(18) = 0. For n = 20 the middle divisors of 20 are [4, 5]. There is only one even middle divisor of 20 so a(20) = 1. For n = 24 the middle divisors of 24 are [4, 6]. There are two even middle divisors of 24 so a(24) = 2.
Programs
-
Mathematica
a[n_] := Count[Divisors[n], ?(EvenQ[#] && Sqrt[n/2] <= # < Sqrt[2*n] &)]; Array[a, 100] (* _Amiram Eldar, Mar 16 2023 *)
-
PARI
a(n) = sumdiv(n, d, if (!(d%2), (d>=sqrt(n/2)) && (d
Michel Marcus, Mar 15 2023
Comments