A361601 Decimal expansion of the maximum possible disorientation angle between two identical cubes (in radians).
1, 0, 9, 6, 0, 5, 6, 8, 1, 5, 2, 4, 0, 6, 2, 5, 4, 8, 9, 0, 6, 1, 7, 2, 6, 5, 6, 5, 6, 4, 1, 2, 5, 7, 3, 5, 6, 9, 5, 9, 4, 2, 4, 7, 2, 7, 3, 1, 8, 4, 0, 8, 6, 3, 3, 9, 9, 1, 0, 9, 6, 8, 7, 7, 7, 2, 0, 6, 7, 8, 8, 7, 1, 0, 9, 2, 9, 7, 0, 9, 1, 0, 7, 7, 9, 8, 7, 0, 6, 3, 1, 4, 8, 8, 8, 2, 5, 7, 5, 7, 5, 7, 6, 9, 1
Offset: 1
Examples
1.09605681524062548906172656564125735695942472731840...
Links
- D. C. Handscomb, On the random disorientation of two cubes, Canadian Journal of Mathematics, Vol. 10 (1958), pp. 85-88.
- J. K. Mackenzie, Second Paper on Statistics Associated with the Random Disorientation of Cubes, Biometrika, Vol. 45, No. 1-2 (1958), pp. 229-240.
- J. K. Mackenzie and M. J. Thomson, Some Statistics Associated with the Random Disorientation of Cubes, Biometrika, Vol. 44, No. 1-2 (1957), pp. 205-210.
- Wikipedia, Misorientation.
- Index entries for transcendental numbers.
Programs
-
Mathematica
RealDigits[ArcCos[Sqrt[2]/2 - 1/4], 10, 100][[1]]
-
PARI
acos(sqrt(2)/2 - 1/4)
Formula
Equals arccos(sqrt(2)/2 - 1/4).
Equals 2 * arccos(1/2 + sqrt(2)/4).
Equals 2 * arctan((sqrt(2)-1) * sqrt(5-2*sqrt(2))).
Comments