A361611 Lexicographically least increasing sequence of semiprimes a(n) such that a(n) - a(n-1) and a(n) + a(n-1) are also semiprimes.
4, 10, 25, 94, 115, 206, 221, 298, 391, 478, 511, 526, 551, 586, 655, 694, 703, 758, 779, 934, 949, 974, 989, 993, 1126, 1159, 1418, 1513, 1522, 1555, 1594, 1603, 1658, 1679, 1718, 1769, 2018, 2051, 2066, 2105, 2174, 2195, 2234, 2319, 2462, 2501, 2578, 2587, 2846, 2867, 2906, 2931, 2986, 3007
Offset: 1
Keywords
Examples
a(3) = 25 because with a(2) = 10, 25, 25 - 10 = 15 and 25 + 10 = 35 are all semiprimes, and none of the semiprimes between 10 and 25 work.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A001358.
Programs
-
Maple
R:= 4: count:= 0: x:= 4: for i from 5 while count < 100 do if andmap(t -> numtheory:-bigomega(t)=2, [i,i+x,i-x]) then R:= R,i; x:= i; count:= count+1 fi od: R;
-
Mathematica
s = {m=4};Do[p = m + 4; While[{2, 2, 2} != PrimeOmega[{p, m + p, p - m}], p++]; AppendTo[s, m = p], {100}]; s