A361627 Positive integers such that GCD(A007504(n),n) != 1.
18, 23, 24, 25, 30, 36, 42, 53, 54, 56, 57, 63, 78, 84, 85, 90, 99, 105, 111, 117, 123, 126, 129, 138, 154, 170, 177, 180, 190, 195, 207, 213, 222, 228, 230, 237, 238, 240, 245, 246, 252, 258, 270, 273, 275, 276, 282, 288, 297, 299, 303, 304, 309, 318, 319, 322, 327, 333, 339, 345
Offset: 1
Keywords
Examples
18 is a term of this sequence since the sum of the first 18 primes is 501 and GCD(501,18) = 3 != 1.
Programs
-
Mathematica
s[n_] := Sum[Prime[k], {k, 1, n}]; Complement[Table[n, {n, 1, 1000}], Flatten[Position[Table[GCD[s[n], n], {n, 1, 1000}], 1]]]
-
PARI
isok(k) = gcd(vecsum(primes(k)), k) != 1; \\ Michel Marcus, Mar 18 2023
-
Python
from math import gcd from itertools import count, islice from sympy import nextprime def A361627_gen(): # generator of terms p, s = 2, 2 for n in count(1): if gcd(n,s) > 1: yield n s += (p:=nextprime(p)) A361627_list = list(islice(A361627_gen(),20)) # Chai Wah Wu, Mar 22 2023
Comments