A361682 Array read by descending antidiagonals. A(n, k) is the number of multiset combinations of {0, 1} whose type is defined in the comments. Also A(n, k) = hypergeom([-k, -2], [1], n).
1, 1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 10, 13, 7, 1, 1, 15, 25, 22, 9, 1, 1, 21, 41, 46, 33, 11, 1, 1, 28, 61, 79, 73, 46, 13, 1, 1, 36, 85, 121, 129, 106, 61, 15, 1, 1, 45, 113, 172, 201, 191, 145, 78, 17, 1, 1, 55, 145, 232, 289, 301, 265, 190, 97, 19, 1
Offset: 0
Examples
Array A(n, k) starts: [0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 [1] 1, 3, 6, 10, 15, 21, 28, 36, ... A000217 [2] 1, 5, 13, 25, 41, 61, 85, 113, ... A001844 [3] 1, 7, 22, 46, 79, 121, 172, 232, ... A038764 [4] 1, 9, 33, 73, 129, 201, 289, 393, ... A081585 [5] 1, 11, 46, 106, 191, 301, 436, 596, ... A081587 [6] 1, 13, 61, 145, 265, 421, 613, 841, ... A081589 [7] 1, 15, 78, 190, 351, 561, 820, 1128, ... A081591 000012 | A028872 | A239325 | A005408 A100536 A069133 . Triangle T(n, k) starts: [0] 1; [1] 1, 1; [2] 1, 3, 1; [3] 1, 6, 5, 1; [4] 1, 10, 13, 7, 1; [5] 1, 15, 25, 22, 9, 1; [6] 1, 21, 41, 46, 33, 11, 1; [7] 1, 28, 61, 79, 73, 46, 13, 1; [8] 1, 36, 85, 121, 129, 106, 61, 15, 1; [9] 1, 45, 113, 172, 201, 191, 145, 78, 17, 1. . Row 4 of the triangle: A(0, 4) = 1 = card(''). A(1, 3) = 10 = card('', 0, 00, 000, 1, 10, 100, 11, 110, 111). A(2, 2) = 13 = card('', 0, 00, 000, 0000, 1, 10, 100, 11, 110, 1100, 111, 1111). A(3, 1) = 7 = card('', 0, 00, 000, 1, 11, 111). A(4, 0) = 1 = card('').
Crossrefs
Programs
-
Maple
A := (n, k) -> 1 + n*k*(4 + n*(k - 1))/2: for n from 0 to 7 do seq(A(n, k), k = 0..7) od; # Alternative: ogf := n -> (1 + (n - 1)*x)^2 / (1 - x)^3: ser := n -> series(ogf(n), x, 12): row := n -> seq(coeff(ser(n), x, k), k = 0..9): seq(print(row(n)), n = 0..7);
-
SageMath
def A(m: int, steps: int) -> int: if m == 0: return 1 size = m * steps cset = set() for a in range(0, size + 1, m): S = [str(int(i < a)) for i in range(size)] C = Combinations(S) cset.update("".join(i for i in c) for c in C) return len(cset) def ARow(n: int, size: int) -> list[int]: return [A(n, k) for k in range(size + 1)] for n in range(8): print(ARow(n, 7))
Formula
A(n, k) = 1 + n*k*(4 + n*(k - 1))/2.
T(n, k) = 1 + k*(n - k)*(4 + k*(n - k - 1))/2.
A(n, k) = [x^k] (1 + (n - 1)*x)^2 / (1 - x)^3.
A(n, k) = hypergeom([-k, -2], [1], n).
A(n, k) = A361521(n, k) + 1.
Comments