A361685 Number of iterations of sopf until reaching a prime.
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 1, 3, 1, 2, 0, 2, 0, 1, 3, 1, 2, 1, 0, 3, 2, 1, 0, 2, 0, 1, 2, 2, 0, 1, 1, 1, 2, 3, 0, 1, 2, 2, 2, 1, 0, 2, 0, 4, 2, 1, 2, 2, 0, 1, 4, 3, 0, 1, 0, 3, 2, 3, 2, 2, 0, 1, 1, 1, 0, 2, 2, 3, 2, 1, 0, 2, 2, 2, 2, 2, 2, 1, 0, 2, 3, 1, 0
Offset: 2
Keywords
Examples
a(15) = 2 because 15 is not prime, sopf(15) = 8 is not prime, and sopf^2(15) = sopf(8) = 2 is prime. a(16) = 1 because 16 is not prime and sopf(16) = 2 is prime. a(17) = 0 because 17 is prime.
Links
- Antti Karttunen, Table of n, a(n) for n = 2..65537
Programs
-
MATLAB
for n=2:101 s = n; c = 0; while ~isprime(s) s = sum(unique(factor(s))); c = c + 1; end a(n) = c; end
-
PARI
A008472(n) = vecsum(factor(n)[, 1]); A361685(n) = for(k=0,oo,if(isprime(n),return(k)); n = A008472(n)); \\ Antti Karttunen, Jan 28 2025
Formula
For n >= 2, a(n) = min{m : sopf^m(n) is prime} where sopf^m indicates m iterations of sopf, the sum of the prime factors function.
a(n) = A321944(n) - 1. - Rémy Sigrist, Mar 29 2023