A361713 a(n) = Sum_{k = 0..n-1} binomial(n,k)^2 * binomial(n+k-1,k)^2.
0, 1, 17, 406, 10257, 268126, 7213166, 198978074, 5609330705, 161095277710, 4700175389142, 138986764820410, 4157185583199534, 125568602682092818, 3825026187780837266, 117376010145070696906, 3625095243230562818065, 112596592142021739522670, 3514965607470183733302470
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..650
- Peter Bala, Recurrence equation for A361713
Programs
-
Maple
seq(add(binomial(n,k)^2*binomial(n+k-1,k)^2, k = 0..n-1), n = 0..25); # Alternative: A361713 := n -> hypergeom([-n, -n, n, n], [1, 1, 1], 1) - binomial(2*n - 1, n)^2: seq(simplify(A361713(n)), n = 0..18); # Peter Luschny, Mar 27 2023
-
Mathematica
A361713[n_] := HypergeometricPFQ[{-n, -n, n, n}, {1, 1, 1}, 1] - Binomial[2*n-1, n]^2; Array[A361713, 20, 0] (* Paolo Xausa, Jul 11 2024 *)
Formula
a(n) ~ C*(12*sqrt(2) + 17)^n/n^(3/2), where C = 1/(2^(5/4)*Pi^(3/2)).
a(n) = hypergeom([-n, -n, n, n], [1, 1, 1], 1) - binomial(2*n-1, n)^2. This is another way to write the first formula. - Peter Luschny, Mar 27 2023
Comments