A361725 a(n) is the largest of two middle prime factors of n if the number of prime divisors counted with multiplicity (A001222(n)) is even, otherwise is the middle prime factor of n.
2, 3, 2, 5, 3, 7, 2, 3, 5, 11, 2, 13, 7, 5, 2, 17, 3, 19, 2, 7, 11, 23, 2, 5, 13, 3, 2, 29, 3, 31, 2, 11, 17, 7, 3, 37, 19, 13, 2, 41, 3, 43, 2, 3, 23, 47, 2, 7, 5, 17, 2, 53, 3, 11, 2, 19, 29, 59, 3, 61, 31, 3, 2, 13, 3, 67, 2, 23, 5, 71, 2, 73, 37, 5, 2, 11, 3
Offset: 2
Keywords
Examples
a(30) = a(2*3*5) = 3; a(60) = a(2*2*3*5) = 3; a(72) = a(2*2*2*3*3) = 2.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Programs
-
Maple
f:= proc(n) local F,m; F:= sort(map(t -> t[1]$t[2],ifactors(n)[2])); m:= ceil((1+nops(F))/2); F[m] end proc: map(f, [$2..100]); # Robert Israel, May 19 2025
-
Mathematica
f[n_] := Block[{p = Flatten[Table[#1, {#2}] & @@@ FactorInteger@ n], len}, len = Length@ p; If[OddQ@ len, p[[(1 + len)/2]], p[[len/2+1]]]]; Table[f@ n, {n, 2, 78}] (* After Michael De Vlieger in A079879 *)