cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A361726 Diagonal of rational function 1/(1 - (1 + x*y) * (x^2 + y^2)).

Original entry on oeis.org

1, 0, 2, 4, 8, 24, 56, 144, 376, 960, 2512, 6560, 17184, 45248, 119296, 315392, 835552, 2217216, 5893568, 15687552, 41810944, 111567104, 298016512, 796832256, 2132456704, 5711486976, 15309014528, 41062927360, 110213725184, 295995574272, 795391639552
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k, k)*binomial(2*k, n-2*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^2 * (1+x)^2).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k,k) * binomial(2*k,n-2*k).
a(n) ~ (1 + sqrt(3))^(n + 1/2) / (2*3^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 22 2023
n*a(n) = 2*(2*n-2)*a(n-2) + 4*(2*n-3)*a(n-3) + 2*(2*n-4)*a(n-4) for n > 3. - Seiichi Manyama, Mar 23 2023

A361488 Diagonal of rational function 1/(1 - (x^3 + y^3 + x^4*y)).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 6, 12, 6, 20, 60, 60, 90, 280, 420, 532, 1330, 2520, 3444, 6804, 14112, 21912, 37884, 77616, 133914, 223080, 432432, 793364, 1341912, 2471040, 4629196, 8076640, 14453010, 26960232, 48308832, 85794852, 157947816, 287413152, 512697900, 933072064
Offset: 0

Views

Author

Seiichi Manyama, Mar 22 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2*k,k] * Binomial[k,n-3*k], {k,0,n/3}], {n,0,20}] (* Vaclav Kotesovec, Mar 23 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k, k)*binomial(k, n-3*k));

Formula

G.f.: 1/sqrt(1 - 4 * x^3 * (1+x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(k,n-3*k).
From Vaclav Kotesovec, Mar 23 2023: (Start)
Recurrence: n*a(n) = 2*(2*n-3)*a(n-3) + 4*(n-2)*a(n-4).
a(n) ~ sqrt(c) * d^n / sqrt(Pi*n), where d = 1.835086681639635368143322042736678753... is the positive real root of the equation d^4 - 4*d - 4 = 0 and c = 0.2982650309662120181812121016104223... is the largest real root of the equation 1 - 20*c + 132*c^2 - 364*c^3 + 364*c^4 = 0. (End)
Showing 1-2 of 2 results.