cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361731 Array read by descending antidiagonals. A(n, k) = hypergeom([-k, -3], [1], n).

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 7, 1, 1, 20, 25, 10, 1, 1, 35, 63, 46, 13, 1, 1, 56, 129, 136, 73, 16, 1, 1, 84, 231, 307, 245, 106, 19, 1, 1, 120, 377, 586, 593, 396, 145, 22, 1, 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1, 1, 220, 833, 1576, 2073, 2076, 1585, 848, 241, 28, 1
Offset: 0

Views

Author

Peter Luschny, Mar 22 2023

Keywords

Examples

			Array A(n, k) starts:
 [0] 1,  1,   1,   1,    1,    1,    1,     1, ...  A000012
 [1] 1,  4,  10,  20,   35,   56,   84,   120, ...  A000292
 [2] 1,  7,  25,  63,  129,  231,  377,   575, ...  A001845
 [3] 1, 10,  46, 136,  307,  586, 1000,  1576, ...  A081583
 [4] 1, 13,  73, 245,  593, 1181, 2073,  3333, ...  A081586
 [5] 1, 16, 106, 396, 1011, 2076, 3716,  6056, ...  A081588
 [6] 1, 19, 145, 595, 1585, 3331, 6049,  9955, ...  A081590
 [7] 1, 22, 190, 848, 2339, 5006, 9192, 15240, ...
.
Table T(n, k) starts:
 [0] 1;
 [1] 1,   1;
 [2] 1,   4,   1;
 [3] 1,  10,   7,    1;
 [4] 1,  20,  25,   10,    1;
 [5] 1,  35,  63,   46,   13,    1;
 [6] 1,  56, 129,  136,   73,   16,   1;
 [7] 1,  84, 231,  307,  245,  106,  19,   1;
 [8] 1, 120, 377,  586,  593,  396, 145,  22,  1;
 [9] 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1;
		

Crossrefs

Columns: A000012, A016777, A100536.
Hypergeometric family: A000012 (m=0), A077028 (m=1), A361682 (m=2), this array (m=3).

Programs

  • Maple
    A := (n, k) -> 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6;
    seq(print(seq(A(n, k), k = 0..7)), n = 0..7);
    # Alternative:
    ogf := n -> (1 + (n - 1) * x)^3 / (1 - x)^4:
    ser := n -> series(ogf(n), x, 12):
    row := n -> seq(coeff(ser(n), x, k), k = 0..9):
    seq(print(row(n)), n = 0..9);

Formula

A(n, k) = [x^k] (1 + (n - 1) * x)^3 / (1 - x)^4.
A(n, k) = 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6.
T(n, k) = 1 + (((k*(n - k) - 3*k + 9)*k*(n - k) + (2*k - 9)*k + 18)*k*(n - k))/6.