cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361753 a(n) = Sum_{k=0..floor(n/3)} binomial(2*(n-3*k),k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 20, 74, 276, 1044, 3994, 15426, 60008, 234764, 922716, 3640700, 14411952, 57210750, 227659704, 907853778, 3627085932, 14515139376, 58174092472, 233463067284, 938061587212, 3773298437204, 15193083455580, 61230698571372, 246978403761112
Offset: 0

Views

Author

Seiichi Manyama, Mar 23 2023

Keywords

Comments

Diagonal of rational function 1/(1 - (1 + (x*y)^3) * (x + y)).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*(n-3*k), k)*binomial(2*(n-3*k), n-3*k));
    
  • Python
    from math import comb
    def A361753(n): return sum(comb(m:=(r:=n-3*k)<<1,k)*comb(m,r) for k in range(n//3+1)) # Chai Wah Wu, Mar 23 2023

Formula

G.f.: 1/sqrt(1 - 4*x*(1 + x^3)^2).
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) + 8*(n-2)*a(n-4) + 2*(2*n-7)*a(n-7). - Vaclav Kotesovec, Mar 23 2023