cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361762 Expansion of g.f. A(x) satisfying A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x).

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 197, 779, 3135, 12709, 51757, 211761, 871022, 3603282, 14992067, 62719588, 263724900, 1114107925, 4726879206, 20135644606, 86099626270, 369492052236, 1591170063412, 6875211016868, 29803706856996, 129607445296468, 565362988510604, 2473576310166981
Offset: 0

Views

Author

Paul D. Hanna, Mar 23 2023

Keywords

Comments

Related Catalan identity: C(x)^2 = C( x^2/(1 - 2*x)^2 ) / (1 - 2*x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Radius of convergence of g.f. A(x) is r where r is the real root of r = (1 - 3*r)^(3/2) with A(r) = 1/r^(1/3) = 1.6716998816571609697481497812195572... so that A(r)^3 = A(r)/(1 - 3*r) and r = (52 - (324*sqrt(717) + 8108)^(1/3) + (324*sqrt(717) - 8108)^(1/3))/162 = 0.214054846272632706742187569443388024...

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 15*x^4 + 52*x^5 + 197*x^6 + 779*x^7 + 3135*x^8 + 12709*x^9 + 51757*x^10 + 211761*x^11 + 871022*x^12 + ...
such that A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x).
RELATED SERIES.
A(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 93*x^4 + 333*x^5 + 1271*x^6 + 5064*x^7 + 20673*x^8 + 85460*x^9 + ... + A361763(n+1)*x^n + ...
A( x^3/(1 - 3*x)^3 ) = 1 + x^3 + 9*x^4 + 54*x^5 + 272*x^6 + 1251*x^7 + 5481*x^8 + 23441*x^9 + 99279*x^10 + ...
SPECIFIC VALUES.
A(1/5) = ( 5/2 * A(1/8) )^(1/3) = 1.431256341682946446458148822310720...
A(1/5) = (1 - 3/5)^(-1/3) * (1 - 3/8)^(-1/9) * (1 - 3/125)^(-1/27) * (1 - 3/1815848)^(-1/81) * ...
A(1/6) = ( 2 * A(1/27) )^(1/3) = 1.2765282682430983587479124671832773...
A(1/6) = (1 - 3/6)^(-1/3) * (1 - 3/27)^(-1/9) * (1 - 3/13824)^(-1/27) * (1 - 3/2640087986661)^(-1/81) * ...
A(1/9) = ( 3/2 * A(1/216) )^(1/3) = 1.146494555403917024085906029391966218...
A(1/12) = ( 4/3 * A(1/729) )^(1/3) = 1.101146836396635655557234214350215617...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=1, #binary(n+1), A = ( subst(A, x, x^3/(1 - 3*x +x*O(x^n))^3 )/(1 - 3*x +x*O(x^n)) )^(1/3) ); polcoeff(H=A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x)^3 = A( x^3/(1 - 3*x)^3 ) / (1 - 3*x).
(2) A(x^3) = A( x/(1 + 3*x) )^3 / (1 + 3*x).
(3) A(x) = Product_{n>=1} 1/(1 - 3/F(n,x))^(1/3^n), where F(1,x) = 1/x, F(m,x) = (F(m-1,x) - 3)^3 for m > 1.