cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361766 Expansion of g.f. A(x) satisfying 0 = Sum_{n=-oo..+oo} x^n * (1 - x^n/A(-x))^(n+2).

Original entry on oeis.org

1, 1, 2, 5, 12, 27, 57, 123, 280, 666, 1614, 3955, 9733, 23949, 58967, 145844, 363137, 910339, 2295192, 5811070, 14754567, 37542078, 95715596, 244567665, 626388406, 1608131393, 4137707994, 10667045757, 27546269363, 71241831762, 184508259405, 478501423792
Offset: 0

Views

Author

Paul D. Hanna, Mar 26 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds for all y as a formal power series in x.
Related identity: 0 = Sum_{n=-oo..+oo} x^(3*n) * (y - x^n)^(n+2), which holds for all y as a formal power series in x. - Paul D. Hanna, Jan 19 2025

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 27*x^5 + 57*x^6 + 123*x^7 + 280*x^8 + 666*x^9 + 1614*x^10 + 3955*x^11 + 9733*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
    A[#A] = -polcoeff( sum(m=-#A,#A, (-x)^m * (1 - (-x)^m/Ser(A))^(m+2) ), #A-3));A[n+1]}
    for(n=0,35,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (A(x) - (-x)^n)^(n+2) / A(x)^n.
(2) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)) * A(x)^n / (1 - (-x)^n*A(x))^(n-2).
From Paul D. Hanna, Jan 19 2025: (Start)
(3) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n) * (1 - (-x)^n)^n * A(x)^n.
(4) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-3)) / ((1 - (-x)^n)^n * A(x)^n).
(End)
a(n) ~ c * d^n / n^(3/2), where d = 2.71312501383... and c = 3.43853109... - Vaclav Kotesovec, Mar 31 2023