cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361771 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(n-1).

Original entry on oeis.org

1, 1, 1, 7, 28, 89, 421, 1898, 7912, 36412, 169960, 779139, 3668210, 17486938, 83333003, 400956919, 1943928504, 9455346485, 46225027071, 227066384875, 1119123274755, 5534782142253, 27463607765186, 136652474592260, 681728348606011, 3409395265172439, 17088672210734316
Offset: 0

Views

Author

Paul D. Hanna, May 13 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 28*x^4 + 89*x^5 + 421*x^6 + 1898*x^7 + 7912*x^8 + 36412*x^9 + 169960*x^10 + 779139*x^11 + 3668210*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( sum(m=-#A, #A, x^m * (2*Ser(A) - (-x)^m)^(m-1) ), #A-1)/2); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 1 = Sum_{n=-oo..+oo} x^n * (2*A(x) - (-x)^n)^(n-1).
(2) 1 = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n^2) / (1 - 2*A(x)*(-x)^n)^(n+1).