cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A359712 a(n) = coefficient of x^n in A(x) such that 2 = Sum_{n=-oo..+oo} (-x)^n * (2*A(x) + x^(n-1))^(n+1).

Original entry on oeis.org

1, 4, 20, 106, 586, 3356, 19728, 118382, 722208, 4466050, 27931600, 176371300, 1122867012, 7199842666, 46454345844, 301384205640, 1964899532794, 12866563846920, 84585757496444, 558060746899684, 3693810227983576, 24521903234307786, 163234951757526400
Offset: 0

Views

Author

Paul D. Hanna, Jan 17 2023

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 20*x^2 + 106*x^3 + 586*x^4 + 3356*x^5 + 19728*x^6 + 118382*x^7 + 722208*x^8 + 4466050*x^9 + 27931600*x^10 +  ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,y=2); for(i=1,n,
    A = 1/sum(m=-#A,#A, (-1)^m * (x*y*A + x^m + x*O(x^n) )^m ) );
    polcoeff( A,n,x)}
    for(n=0,25, print1( a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],y=2); for(i=1,n, A = concat(A,0);
    A[#A] = polcoeff(-y + sum(n=-#A,#A, (-1)^n * x^n * (y*Ser(A) + x^(n-1))^(n+1) )/(-y),#A-1,x) ); A[n+1]}
    for(n=0,25, print1( a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n) * x^n may be described as follows.
(1) 2 = Sum_{n=-oo..+oo} (-1)^n * x^n * (2*A(x) + x^(n-1))^(n+1).
(2) 2*x = Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^(n+1).
(3) 2*x = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n-1).
(4) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * (2*x*A(x) + x^n)^n ].
(5) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^n * x^(n^2) / (1 + 2*A(x)*x^(n+1))^n ].
From Paul D. Hanna, May 12 2023: (Start)
(6) 2 = Sum_{n=-oo..+oo} (-1)^n * x^(3*n+1) * (2*A(x) + x^n)^n.
(7) A(x) = 1 / [Sum_{n=-oo..+oo} (-1)^(n+1) * x^(2*n+1) * (2*A(x) + x^n)^n ].
(8) 2*x = Sum_{n=-oo..+oo} (-1)^(n+1) * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^(n+1).
(9) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n) * (2*A(x) + x^n)^(n+1).
(10) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^n)^n.
(11) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 + 2*A(x)*x^(n+1))^n. (End)
a(n) = Sum_{k=0..n} A359670(n,k)*2^k for n >= 0.

A361779 Expansion of g.f. A(x) satisfying 1/x = Sum_{n=-oo..+oo} x^n * (x^(2*n) - (-1)^n*A(x))^(n+1).

Original entry on oeis.org

1, 1, 2, 5, 10, 21, 51, 121, 282, 688, 1704, 4212, 10528, 26626, 67630, 172590, 443156, 1143034, 2958829, 7687875, 20043717, 52410511, 137417383, 361225349, 951755240, 2513057208, 6648904064, 17624116631, 46796906873, 124460500129, 331517863145, 884305712723, 2362007410465
Offset: 0

Views

Author

Paul D. Hanna, May 10 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 10*x^4 + 21*x^5 + 51*x^6 + 121*x^7 + 282*x^8 + 688*x^9 + 1704*x^10 + 4212*x^11 + 10528*x^12 + ...
SPECIFIC VALUES.
A(1/4) = 1.54381930928063102950885404708273996504264975892127868985...
A(3/10) = 1.8845579890166759655973763714847523770459496427989251...
A(1/3) = 2.35223102094304184442834405817178151095013948472323960819...
		

Crossrefs

Cf. A361778.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0);
    A[#A] = polcoeff( sum(m=-#A, #A, x^m * (x^(2*m) - (-1)^m*Ser(A))^(m+1) ), #A-1) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) 1/x = Sum_{n=-oo..+oo} x^n * ((-x^2)^n - A(x))^(n+1).
(2) 1 = Sum_{n=-oo..+oo} x^(n*(2*n+1)) / (1 - A(x)*(-x^2)^(n+1))^n.
a(n) ~ c * d^n / n^(3/2), where d = 2.791690127253271... and c = 2.581668816660... - Vaclav Kotesovec, May 11 2023
Showing 1-2 of 2 results.