A361821 Perfect powers in A329150.
25, 27, 32, 225, 2025, 2197, 2500, 3025, 3375, 7225, 11025, 13225, 21952, 22500, 27000, 27225, 55225, 70225, 112225, 133225, 172225, 195112, 202500, 207025, 235225, 250000, 255025, 302500, 319225, 511225, 555025, 570025, 722500, 1102500, 1113025, 1177225, 1311025
Offset: 1
Examples
32 is a term since A329147(21) = 32 = 2^5. 2197 is a term since A329147(194) = 2197 = 13^3. 235225 is a term since A329147(123113) = 235225 = 485^2.
Crossrefs
Programs
-
Mathematica
p[n_] := If[n > 0, Prime[n], 0]; ppQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; seq[ndigmax_] := Module[{t = Table[FromDigits[Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, 0 < # < 10^ndigmax && ppQ[#] &]]; seq[6] (* Amiram Eldar, Mar 26 2023 *)
-
PARI
f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147 lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispower(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023
Comments