cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361839 Square array T(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - 9*x*(1 + x)^k)^(1/3).

Original entry on oeis.org

1, 1, 3, 1, 3, 18, 1, 3, 21, 126, 1, 3, 24, 162, 945, 1, 3, 27, 201, 1341, 7371, 1, 3, 30, 243, 1809, 11529, 58968, 1, 3, 33, 288, 2352, 16893, 101619, 480168, 1, 3, 36, 336, 2973, 23607, 161676, 911466, 3961386, 1, 3, 39, 387, 3675, 31818, 242757, 1574289, 8281737, 33011550
Offset: 0

Views

Author

Seiichi Manyama, Mar 26 2023

Keywords

Examples

			Square array begins:
     1,     1,     1,     1,     1,     1, ...
     3,     3,     3,     3,     3,     3, ...
    18,    21,    24,    27,    30,    33, ...
   126,   162,   201,   243,   288,   336, ...
   945,  1341,  1809,  2352,  2973,  3675, ...
  7371, 11529, 16893, 23607, 31818, 41676, ...
		

Crossrefs

Columns k=0..3 give A004987, A180400, A361841, A361842.
Main diagonal gives A361846.

Programs

  • PARI
    T(n,k) = sum(j=0, n, (-9)^j*binomial(-1/3, j)*binomial(k*j, n-j));

Formula

n*T(n,k) = 3 * Sum_{j=0..k} binomial(k,j)*(3*n-2-2*j)*T(n-1-j,k) for n > k.
T(n,k) = Sum_{j=0..n} (-9)^j * binomial(-1/3,j) * binomial(k*j,n-j).