A361854 Number of strict integer partitions of n such that (length) * (maximum) = 2n.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1
Keywords
Examples
The a(n) strict partitions for selected n (A..E = 10..14): n=9: n=12: n=14: n=15: n=16: n=18: n=20: n=21: n=22: -------------------------------------------------------------- 621 831 7421 A32 8431 C42 A532 E43 B542 6321 A41 8521 C51 A541 E52 B632 9432 A631 E61 B641 9531 A721 B731 9621 85421 B821 86321 The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1). The strict partition y = (8,5,4,2,1) has diagram: o o o o o o o o o o o o o . . . o o o o . . . . o o . . . . . . o . . . . . . . Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[#]*Max@@#==2n&]],{n,30}]
Comments