A361893 Triangle read by rows. T(n, k) = n! * binomial(n - 1, k - 1) / (n - k)!.
1, 0, 1, 0, 2, 2, 0, 3, 12, 6, 0, 4, 36, 72, 24, 0, 5, 80, 360, 480, 120, 0, 6, 150, 1200, 3600, 3600, 720, 0, 7, 252, 3150, 16800, 37800, 30240, 5040, 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320, 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880
Offset: 0
Examples
Triangle T(n, k) starts: [0] 1; [1] 0, 1; [2] 0, 2, 2; [3] 0, 3, 12, 6; [4] 0, 4, 36, 72, 24; [5] 0, 5, 80, 360, 480, 120; [6] 0, 6, 150, 1200, 3600, 3600, 720; [7] 0, 7, 252, 3150, 16800, 37800, 30240, 5040; [8] 0, 8, 392, 7056, 58800, 235200, 423360, 282240, 40320; [9] 0, 9, 576, 14112, 169344, 1058400, 3386880, 5080320, 2903040, 362880;
Crossrefs
Programs
-
Maple
A361893 := (n, k) -> n!*binomial(n - 1, k - 1)/(n - k)!: seq(seq(A361893(n,k), k = 0..n), n = 0..9); # Using the egf.: egf := 1 + (x*y/(1 - x*y))*exp(y/(1 - x*y)): ser := series(egf, y, 10): poly := n -> convert(n!*expand(coeff(ser, y, n)), polynom): row := n -> seq(coeff(poly(n), x, k), k = 0..n): seq(print(row(n)), n = 0..6);