A361897 Leading terms of the rows of the array in A362450; or, Gilbreath transform of tau (A000005).
1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0
Offset: 1
Examples
Table begins (conjecture is leading terms are 0 or 1): 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 ... 1 0 1 1 2 2 2 1 1 2 4 4 2 0 1 3 4 4 4 2 0 2 6 5 1 0 2 4 6 6 4 2 0 0 5 7 2 0 ... 1 1 0 1 0 0 1 0 1 2 0 2 2 1 2 1 0 0 2 2 2 4 1 4 1 2 2 2 0 2 2 2 0 5 2 5 2 4 ... 0 1 1 1 0 1 1 1 1 2 2 0 1 1 1 1 0 2 0 0 2 3 3 3 1 0 0 2 2 0 0 2 5 3 3 3 2 ... 1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 2 2 0 2 1 0 0 2 1 0 2 0 2 0 2 3 2 0 0 1 0 ... 1 0 1 0 1 0 0 1 1 2 1 1 0 0 1 1 0 2 2 1 1 0 2 1 1 2 2 2 2 2 1 1 2 0 1 1 ... 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 0 0 0 0 1 0 1 2 1 0 1 ... 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 ... 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ... 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 ... 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 ... 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 ... etc. ... The first two rows are A000005, abs(A051950). The full table, read by antidiagonals, is A362450.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..10000
- N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: Video, Slides, Updates. (Mentions this sequence.)
- Index entries for sequences related to Gilbreath conjecture and transform
Crossrefs
Programs
-
Maple
N:= 200: # for a(1) to a(N) L:= [seq(numtheory:-tau(n),n=1..N)]: for i from 1 to 105 do R[i]:= L[1]; L:= map(abs,L[2..-1]-L[1..-2]) od: seq(R[i],i=1..M); # Robert Israel, May 07 2023
-
Mathematica
a[n_] := NestWhile[ Abs@ Differences@ # &, Table[ DivisorSigma[0, m], {m, n}], Length[##] > 1 &][[1]]; Array[a, 105] (* or *) mx = 105; lst = {}; k = 0; d = Array[ DivisorSigma[0, #] &, mx]; While[k < mx, AppendTo[lst, d[[1]]]; d = Abs@ Differences@ d; k++]; lst (* or *) A361897[nmax_]:=Module[{d=DivisorSigma[0,Range[nmax]]},Join[{1},Table[First[d=Abs[Differences[d]]],nmax-1]]];A361897[200] (* Paolo Xausa, May 07 2023 *)
-
PARI
lista(nn) = my(v=apply(numdiv, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w;); Vec(list); lista(200) \\ Michel Marcus, Mar 29 2023
Extensions
Edited by N. J. A. Sloane, Apr 30 2023
Comments