A361899 a(n) = 3*(6858365065530*(2^45 - 1)*n + 153479820268467961)^2.
70668165688923686196507258250492563, 174687593550891106640307045856561008882907291372256643, 698750373759134872171732581703201135992894186495330123, 1572188340624731296664944773228844067526467943619713003
Offset: 0
References
- H. Suyama, A note on the factors of Fermat numbers II, Abstracts of Papers Presented to the Amer. Math. Soc., Vol. 5 (1984), p. 132.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 0..10000
- Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, 397-405.
- S. W. Golomb, Properties of the sequence 3.2^n + 1, Math. Comp., 30 (1976), 657-663.
- S. W. Golomb, Properties of the sequence 3.2^n + 1, Math. Comp., 30 (1976), 657-663. [Annotated scanned copy]
- Carlos Rivera, Puzzle 1145. Divisors of Fermat numbers, The Prime Puzzles and Problems Connection.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[3*(6858365065530*(2^45-1)*n+153479820268467961)^2: n in [0..3]];
-
Mathematica
Table[3 (6858365065530 (2^45 - 1) n + 153479820268467961)^2, {n, 0, 3}]
-
PARI
a(n)=3*(6858365065530*(2^45-1)*n+153479820268467961)^2
Formula
G.f.: (70668165688923686196507258250492563 + 174687593550891106428302548789789950293385516620778954*x + 174687593106461552462815941200289167933694087130037883*x^2)/(1 - x)^3.
a(n) = 3*(2*(Product_{i=1..13} A361898(i))*n + 153479820268467961)^2.
a(n) = 3*((29062/1192737)*(2^48 - 1)*(2^45 - 1)*n + 153479820268467961)^2.
Comments