A361911
Number of set partitions of {1..n} with block-medians summing to an integer.
Original entry on oeis.org
1, 1, 3, 10, 30, 107, 479, 2249, 11173, 60144, 351086, 2171087, 14138253, 97097101, 701820663, 5303701310, 41838047938, 343716647215, 2935346815495, 25999729551523, 238473713427285, 2261375071834708, 22141326012712122, 223519686318676559, 2323959300370456901
Offset: 1
The a(1) = 1 through a(4) = 10 set partitions:
{{1}} {{1}{2}} {{123}} {{1}{234}}
{{13}{2}} {{12}{34}}
{{1}{2}{3}} {{123}{4}}
{{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{24}{3}}
{{13}{2}{4}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with sum 5, so is counted under a(4).
For median instead of sum we have
A361864.
For mean instead of median we have
A361866.
A308037 counts set partitions with integer average block-size.
-
sps[{}]:={{}}; sps[set:{i_,_}] := Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]], IntegerQ[Total[Median/@#]]&]],{n,10}]
A361863
Number of set partitions of {1..n} such that the median of medians of the blocks is (n+1)/2.
Original entry on oeis.org
1, 2, 3, 9, 26, 69, 335, 1018, 6629, 22805, 182988, 703745
Offset: 1
The a(1) = 1 through a(4) = 9 set partitions:
{{1}} {{12}} {{123}} {{1234}}
{{1}{2}} {{13}{2}} {{12}{34}}
{{1}{2}{3}} {{124}{3}}
{{13}{24}}
{{134}{2}}
{{14}{23}}
{{1}{23}{4}}
{{14}{2}{3}}
{{1}{2}{3}{4}}
The set partition {{1,4},{2,3}} has medians {5/2,5/2}, with median 5/2, so is counted under a(4).
The set partition {{1,3},{2,4}} has medians {2,3}, with median 5/2, so is counted under a(4).
For mean instead of median we have
A361910.
A361864 counts set partitions with integer median of medians, means
A361865.
A361866 counts set partitions with integer sum of medians, means
A361911.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Length[Select[sps[Range[n]],(n+1)/2==Median[Median/@#]&]],{n,6}]
Showing 1-2 of 2 results.
Comments