cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361950 Array read by antidiagonals: T(n,k) = n! * Sum_{s} 2^(Sum_{i=1..k-1} s(i)*s(i+1))/(Product_{i=1..k} s(i)!) where the sum is over all nonnegative compositions s of n into k parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 13, 26, 1, 0, 1, 5, 22, 81, 162, 1, 0, 1, 6, 33, 166, 721, 1442, 1, 0, 1, 7, 46, 287, 1726, 9153, 18306, 1, 0, 1, 8, 61, 450, 3309, 24814, 165313, 330626, 1, 0, 1, 9, 78, 661, 5650, 50975, 494902, 4244481, 8488962, 1, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 31 2023

Keywords

Comments

T(n,k) corresponds to c(k,n) in the Klarner reference. This is an intermediate step in the computation of the number of labeled weakly graded (ranked) posets. The number of elements in the poset is n and the rank k.

Examples

			Array begins:
======================================================
n/k| 0 1      2       3        4        5        6 ...
---+--------------------------------------------------
0  | 1 1      1       1        1        1        1 ...
1  | 0 1      2       3        4        5        6 ...
2  | 0 1      6      13       22       33       46 ...
3  | 0 1     26      81      166      287      450 ...
4  | 0 1    162     721     1726     3309     5650 ...
5  | 0 1   1442    9153    24814    50975    91866 ...
6  | 0 1  18306  165313   494902  1058493  1957066 ...
7  | 0 1 330626 4244481 13729846 29885567 55363650 ...
  ...
T(3,2) = 26: the nonnegative integer compositions of 3 with 2 parts are (0,3), (1,2), (2,1), (3,0). These contribute, respectively 2^0*3!/(0!*3!) = 1, 2^2*3!/(1!*2!) = 12, 2^2*3!/(2!*1!) = 12, 2^0*3!/(0!*3!) = 1, so T(3,2) = 1 + 12 + 12 + 1 = 26.
		

Crossrefs

Rows 0..2 are A000012, A000027, A028872(n+1).
The unlabeled version is A361952.
Cf. A361951.

Programs

  • PARI
    S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )}
    C(n, m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c}
    R(n)={Mat([Col(serlaplace(p)) | p<-C(n)])}
    { my(A=R(6)); for(i=1, #A, print(A[i,])) }