A361951 Triangle read by rows: T(n,k) is the number of labeled weakly graded (ranked) posets with n elements and rank k.
1, 0, 1, 0, 1, 2, 0, 1, 12, 6, 0, 1, 86, 108, 24, 0, 1, 840, 2190, 840, 120, 0, 1, 11642, 55620, 31800, 6840, 720, 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040, 0, 1, 6285806, 82938828, 80529624, 24509520, 4626720, 584640, 40320
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 2; 0, 1, 12, 6; 0, 1, 86, 108, 24; 0, 1, 840, 2190, 840, 120; 0, 1, 11642, 55620, 31800, 6840, 720; 0, 1, 227892, 1858206, 1428000, 384720, 60480, 5040; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50).
- D. A. Klarner, The number of graded partially ordered sets, J. Combin. Theory, 6 (1969), 12-19.
- Wikipedia, Graded poset.
Crossrefs
Programs
-
PARI
\\ Here C(n) gives columns of A361950 as vector of e.g.f.'s. S(M)={matrix(#M, #M, i, j, sum(k=0, i-j, 2^((j-1)*k)*M[i-j+1,k+1])/(j-1)! )} C(n,m=n)={my(M=matrix(n+1, n+1), c=vector(m+1), A=O(x*x^n)); M[1, 1]=1; c[1]=1+A; for(h=1, m, M=S(M); c[h+1]=sum(i=0, n, vecsum(M[i+1, ])*x^i, A)); c} T(n)={my(c=C(n), b=vector(n+1, h, c[h]/c[max(h-1,1)])); Mat(vector(n+1, h, Col(serlaplace(b[h]-if(h>1, b[h-1])), -n-1)))} { my(A=T(7)); for(n=1, #A, print(A[n, 1..n])) }
Formula
E.g.f. of column k >=2: C(k,x)/C(k-1,x) - C(k-1,x)/C(k-2,x) where C(k,x) is the e.g.f. of column k of A361950.
Comments