cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361960 Total semiperimeter of 2-Fuss-Catalan polyominoes of length 2n.

Original entry on oeis.org

2, 12, 71, 430, 2652, 16576, 104652, 665874, 4263050, 27430260, 177233355, 1149159336, 7473264736, 48725661120, 318403991656, 2084753927898, 13673789668854, 89825336129620, 590901795716925, 3892055708986830, 25664871706721940, 169414775012098560, 1119378775384200240, 7402571891557073400, 48993463632294517752, 324501821324483687856
Offset: 1

Views

Author

R. J. Mathar, Mar 31 2023

Keywords

Crossrefs

Cf. A024482 (1-Fuss-Catalan), A075045 (total area), A361961 (3-Fuss-Catalan).

Programs

  • Maple
    Per := proc(s,p,n)
        local i,j,a ;
        a := 0 ;
        for i from 0 to n-1 do
        for j from 0 to n-1-i do
            a := a+ (-1)^j*p^(n+1+i+(s+1)*j) *binomial(n-1+i,i)*binomial(n,j)*binomial(n+s*j,n-1-i-j)/(1-p)^(i+j) ;
        end do:
        end do:
        expand(a/n) ;
        factor(%) ;
    end proc:
    Per1std := proc(s,n)
        local p;
        Per(s,p,n) ;
        diff(%,p) ;
        factor(%) ;
        subs(p=1,%) ;
    end proc:
    seq(Per1std(2,n),n=1..30) ;

Formula

Conjecture: D-finite with recurrence 4*n*(2*n+1)*a(n) -6*n*(11*n-5)*a(n-1) +3*(43*n^2-169*n+130)*a(n-2) -36*(3*n-8)*(3*n-10)*a(n-3)=0.