A361972 Decimal expansion of lim_{n->oo} ( Sum_{k=2..n} 1/(k*log(k)) - log(log(n)) ).
7, 9, 4, 6, 7, 8, 6, 4, 5, 4, 5, 2, 8, 9, 9, 4, 0, 2, 2, 0, 3, 8, 9, 7, 9, 6, 2, 0, 6, 5, 1, 4, 9, 5, 1, 4, 0, 6, 4, 9, 9, 9, 5, 9, 0, 8, 8, 2, 8, 0, 4, 9, 6, 8, 9, 0, 1, 5, 1, 2, 0, 9, 5, 0, 1, 4, 8, 1, 7, 8, 5, 8, 9, 6, 0, 6, 8, 7, 5, 6, 6, 6, 9, 6, 6, 1, 4, 7, 7, 7, 6, 2, 7, 3, 3
Offset: 0
Examples
0.79467864545289940220389796...
References
- J. Guégand and M.-A. Maingueneau, Exercices d'Analyse, Exercice 1.18 p. 23, 1988, Classes Préparatoires aux Grandes Ecoles, Ellipses.
Links
- Mathematics Stack Exchange, Infinite series Sum_{n=2..oo} 1/(n*log(n)).
Programs
-
Maple
limit(sum(1/(k*log(k)), k=2..n) - log(log(n)), n = infinity);
Formula
Limit_{n->oo} 1/(2*log(2)) + 1/(3*log(3)) + ... + 1/(n*log(n)) - log(log(n)).
Comments