A361976
(2,2)-block array, B(2,2), of the natural number array (A000027), read by descending antidiagonals.
Original entry on oeis.org
11, 31, 39, 67, 75, 83, 119, 127, 135, 143, 187, 195, 203, 211, 219, 271, 279, 287, 295, 303, 311, 371, 379, 387, 395, 403, 411, 419, 487, 495, 503, 511, 519, 527, 535, 543, 619, 627, 635, 643, 651, 659, 667, 675, 683, 767, 775, 783, 791, 799, 807, 815, 823
Offset: 1
Corner of B(2,2):
11 31 67 119 187 271
39 75 127 195 279 379
83 135 203 287 387 503
143 211 295 395 511 643
219 303 403 519 651 799
-
zz = 10; z = 13;
w[n_, k_] := n + (n + k - 2) (n + k - 1)/2;
t[n_, k_] := w[2 n - 1, 2 k - 1] + w[2 n - 1, 2 k] + w[2 n, 2 k - 1] + w[2 n, 2 k]
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A361976 sequence*)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (*A361976 array*)
A361975
(2,1)-block array, B(2,1), of the natural number array (A000027), read by descending antidiagonals.
Original entry on oeis.org
4, 7, 16, 12, 23, 36, 19, 32, 47, 64, 28, 43, 60, 79, 100, 39, 56, 75, 96, 119, 144, 52, 71, 92, 115, 140, 167, 196, 67, 88, 111, 136, 163, 192, 223, 256, 84, 107, 132, 159, 188, 219, 252, 287, 324, 103, 128, 155, 184, 215, 248, 283, 320, 359, 400, 124, 151
Offset: 1
Corner of B(2,1):
4 7 12 19 28 39 52
16 23 32 43 56 71 88
36 47 60 75 92 111 132
64 79 96 115 136 159 184
100 119 140 163 188 215 244
144 167 192 219 238 279 312
(column 1 of A000027) = (1,3,6,10,15,21,...), so (column 1 of B(2,1)) = (4,16,64,...);
(column 2 of A000027) = (2,5,9,14,20,27,...), so (column 2 of B(2,1)) = (7,23,47,...).
-
zz = 10; z = 13;
w[n_, k_] := n + (n + k - 2) (n + k - 1)/2;
t[h_, k_] := w[2 h - 1, k] + w[2 h, k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* this sequence as an array *)
A361992
(1,2)-block array, B(1,2), of the Wythoff array (A035513), read by descending antidiagonals.
Original entry on oeis.org
3, 8, 11, 21, 29, 16, 55, 76, 42, 24, 144, 199, 110, 63, 32, 377, 521, 288, 165, 84, 37, 987, 1364, 754, 432, 220, 97, 45, 2584, 3571, 1974, 1131, 576, 254, 118, 50, 6765, 9349, 5168, 2961, 1508, 665, 309, 131, 58, 17711, 24476, 13530, 7752, 3948, 1741, 809
Offset: 1
Corner of B(1,2):
3 8 21 55 144 377 987 ...
11 29 76 199 521 1364 3571 ...
16 42 110 288 754 1974 5168 ...
24 63 165 432 1131 2961 7752 ...
32 84 220 576 1508 3948 10336 ...
...
(row 1 of A035513) = (1,2,3,5,8,13,21,34,...), so (row 1 of B(1,2)) = (3,8,21,55,...);
(row 2 of A000027) = (4,7,11,18,29,47,76,123,...), so (row 2 of B(1,2)) = (11,29,76,199,...).
-
f[n_] := Fibonacci[n]; r = GoldenRatio;
zz = 10; z = 13;
w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
t[h_, k_] := w[h, 2 k - 1] + w[h, 2 k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361992 sequence *)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361992 array *)
Showing 1-3 of 3 results.
Comments