A361975 (2,1)-block array, B(2,1), of the natural number array (A000027), read by descending antidiagonals.
4, 7, 16, 12, 23, 36, 19, 32, 47, 64, 28, 43, 60, 79, 100, 39, 56, 75, 96, 119, 144, 52, 71, 92, 115, 140, 167, 196, 67, 88, 111, 136, 163, 192, 223, 256, 84, 107, 132, 159, 188, 219, 252, 287, 324, 103, 128, 155, 184, 215, 248, 283, 320, 359, 400, 124, 151
Offset: 1
Examples
Corner of B(2,1): 4 7 12 19 28 39 52 16 23 32 43 56 71 88 36 47 60 75 92 111 132 64 79 96 115 136 159 184 100 119 140 163 188 215 244 144 167 192 219 238 279 312 (column 1 of A000027) = (1,3,6,10,15,21,...), so (column 1 of B(2,1)) = (4,16,64,...); (column 2 of A000027) = (2,5,9,14,20,27,...), so (column 2 of B(2,1)) = (7,23,47,...).
Programs
-
Mathematica
zz = 10; z = 13; w[n_, k_] := n + (n + k - 2) (n + k - 1)/2; t[h_, k_] := w[2 h - 1, k] + w[2 h, k]; Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* this sequence *) TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* this sequence as an array *)
Formula
B(2,1) = (b(i,j)), where b(i,j) = w(2i-1, j) + w(2i, j) for i >= 1, j >= 1, where (w(i,j)) is the natural number array (A000027).
b(i,j) = 4i - 1 + (2i + j - 2)^2.
Comments