A361994 (2,2)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.
14, 37, 40, 97, 105, 69, 254, 275, 181, 95, 665, 720, 474, 249, 124, 1741, 1885, 1241, 652, 325, 150, 4558, 4935, 3249, 1707, 851, 393, 179, 11933, 12920, 8506, 4469, 2228, 1029, 469, 205, 31241, 33825, 22269, 11700, 5833, 2694, 1228, 537, 234, 81790, 88555
Offset: 1
Examples
Corner of B(2,2): 14 37 97 254 665 1741 ... 40 105 275 720 1885 4935 ... 69 181 474 1241 3249 8506 ... 95 249 652 1707 4469 11700 ... 124 325 851 2228 5833 15271 ... ... b(1,1) = w(1,1) + w(1,2) + w(2,1) + w(2,2) = 1 + 2 + 4 + 7 = 14; b(1,2) = w(1,3) + w(1,4) + w(2,3) + w(2,4) = 3 + 5 + 11 + 18 = 37; b(2,1) = w(3,1) + w(3,2) + w(4,1) + w(4,2) = 8 + 10 + 9 + 15 = 40.
Crossrefs
Programs
-
Mathematica
f[n_] := Fibonacci[n]; r = GoldenRatio; zz = 10; z = 13; w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k] t[h_, k_] := w[2 h - 1, 2 k - 1] + w[2 h - 1, 2 k] + w[2 h, 2 k - 1] + w[2 h, 2 k]; Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A361994 sequence *) TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361994 array *)
Formula
B(2,2) = (b(i,j)), where b(i,j) = w(2i-1,2j-1) + w(2i-1,2j) + w(2i,2j-1) + w(2i,2j) for i >= 1, j >= 1, where (w(i,j)) is the Wythoff array (A035513).
Comments