A361996
Order array of A361994, read by descending antidiagonals.
Original entry on oeis.org
1, 2, 3, 6, 7, 4, 15, 17, 11, 5, 39, 43, 28, 14, 8, 102, 112, 73, 38, 20, 9, 268, 292, 191, 100, 51, 23, 10, 568, 592, 491, 263, 132, 61, 27, 12, 868, 892, 791, 563, 345, 159, 72, 32, 13, 1168, 1192, 1091, 863, 645, 416, 189, 83, 35, 16, 1468, 1492, 1391
Offset: 1
Corner:
1 2 6 15 39 102 268 ...
3 7 17 43 112 292 592 ...
4 11 28 73 191 491 791 ...
5 14 38 100 263 563 863 ...
8 20 51 132 345 645 945 ...
9 23 61 159 416 716 1016 ...
...
-
zz = 300; z = 30;
w[n_, k_] := w[n, k] = Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
b[h_, k_] := b[h, k] = w[2 h - 1, 2 k - 1] + w[2 h - 1, 2 k] + w[2 h, 2 k - 1] + w[2 h, 2 k];
s = Flatten[Table[b[h, k], {h, 1, zz}, {k, 1, z}]];
r[h_, k_] := Length[Select[s, # <= b[h, k] &]]
TableForm[Table[r[h, k], {h, 1, 50}, {k, 1, 12}]](*A351996, array*)
v = Table[r[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (*A351996, sequence *)
A361993
(2,1)-block array, B(2,1), of the Wythoff array (A035513), read by descending antidiagonals.
Original entry on oeis.org
5, 9, 15, 14, 25, 26, 23, 40, 43, 36, 37, 65, 69, 59, 47, 60, 105, 112, 95, 77, 57, 97, 170, 181, 154, 124, 93, 68, 157, 275, 293, 249, 201, 150, 111, 78, 254, 445, 474, 403, 325, 243, 179, 127, 89, 411, 720, 767, 652, 526, 393, 290, 205, 145, 99, 665, 1165
Offset: 1
Corner of B(2,1):
5 9 14 23 37 60 97 157 ...
15 25 40 65 105 170 275 445 ...
26 43 69 112 181 293 474 767 ...
36 59 95 154 249 403 652 1055 ...
47 77 124 202 325 526 851 1377 ...
...
(column 1 of A035513) = (1,4,6,9,12,14,17,19,...), so (column 1 of B(2,1)) = (5,15,26,36,...);
(column 2 of A000027) = (2,7,10,15,20,23,28,31,...), so (column 2 of B(2,1)) = (9,25,43,59,...).
-
f[n_] := Fibonacci[n]; r = GoldenRatio;
zz = 10; z = 13;
w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
t[h_, k_] := w[2 h - 1, k] + w[2 h, k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361993 sequence *)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361993 array *)
A361992
(1,2)-block array, B(1,2), of the Wythoff array (A035513), read by descending antidiagonals.
Original entry on oeis.org
3, 8, 11, 21, 29, 16, 55, 76, 42, 24, 144, 199, 110, 63, 32, 377, 521, 288, 165, 84, 37, 987, 1364, 754, 432, 220, 97, 45, 2584, 3571, 1974, 1131, 576, 254, 118, 50, 6765, 9349, 5168, 2961, 1508, 665, 309, 131, 58, 17711, 24476, 13530, 7752, 3948, 1741, 809
Offset: 1
Corner of B(1,2):
3 8 21 55 144 377 987 ...
11 29 76 199 521 1364 3571 ...
16 42 110 288 754 1974 5168 ...
24 63 165 432 1131 2961 7752 ...
32 84 220 576 1508 3948 10336 ...
...
(row 1 of A035513) = (1,2,3,5,8,13,21,34,...), so (row 1 of B(1,2)) = (3,8,21,55,...);
(row 2 of A000027) = (4,7,11,18,29,47,76,123,...), so (row 2 of B(1,2)) = (11,29,76,199,...).
-
f[n_] := Fibonacci[n]; r = GoldenRatio;
zz = 10; z = 13;
w[n_, k_] := f[k + 1] Floor[n*r] + (n - 1) f[k]
t[h_, k_] := w[h, 2 k - 1] + w[h, 2 k];
Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A361992 sequence *)
TableForm[Table[t[h, k], {h, 1, zz}, {k, 1, z}]] (* A361992 array *)
Showing 1-3 of 3 results.
Comments