cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A362003 Squarefree composite numbers m such that k - m^2 < m, where k is the smallest number greater than m^2 such that rad(k) | m.

Original entry on oeis.org

42, 66, 78, 362, 1086, 1122, 1254, 1794, 1810, 1846, 1974, 2534, 2730, 3318, 3982, 4890, 5538, 5590, 6006, 6214, 9230, 12922, 12990, 13515, 15510, 16205, 17430, 18642, 20306, 22170, 23170, 25098, 26962, 27030, 29274, 31070, 32142, 32410
Offset: 1

Views

Author

Michael De Vlieger, Apr 05 2023

Keywords

Comments

Most small squarefree m have k - m^2 > m. For prime m = p, k = p^3, hence (p^3 - p^2) > p.

Examples

			a(1) = 42 since 42 is the smallest squarefree number such that the smallest k > m^2 such that rad(k) | m also has difference k - m^2 < m.
Table showing a(n) = A120944(i) = m, A362045(i) = k, and the difference k-m^2.
    i      m         k  (k-m^2)
  -----------------------------
   14     42      1792      28
   22     66      4374      18
   27     78      6144      60
  147    362    131072      28
  478   1086   1179648     252
  495   1122   1259712     828
  558   1254   1572864     348
  813   1794   3219264     828
  822   1810   3276800     700
  840   1846   3407872     156
  900   1974   3898368    1692
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[6, 400], And[CompositeQ[#], SquareFreeQ[#]] &]; Reap[Do[(m = #^2 + 1; While[! Divisible[#, Times @@ FactorInteger[m][[All, 1]]], m++]; If[m - #^2 < #, Sow[#]]) &[s[[i]]], {i, Length[s]}] ][[-1, -1]]
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    isok(m) = if (!isprime(m) && issquarefree(m), for (k=1+m^2, m+m^2, if (!(m % rad(k)), return(1)))); \\ Michel Marcus, Apr 21 2023

Formula

This sequence is { m : A362045(n) - m^2 < m and m in A120944 }.