A362003 Squarefree composite numbers m such that k - m^2 < m, where k is the smallest number greater than m^2 such that rad(k) | m.
42, 66, 78, 362, 1086, 1122, 1254, 1794, 1810, 1846, 1974, 2534, 2730, 3318, 3982, 4890, 5538, 5590, 6006, 6214, 9230, 12922, 12990, 13515, 15510, 16205, 17430, 18642, 20306, 22170, 23170, 25098, 26962, 27030, 29274, 31070, 32142, 32410
Offset: 1
Keywords
Examples
a(1) = 42 since 42 is the smallest squarefree number such that the smallest k > m^2 such that rad(k) | m also has difference k - m^2 < m. Table showing a(n) = A120944(i) = m, A362045(i) = k, and the difference k-m^2. i m k (k-m^2) ----------------------------- 14 42 1792 28 22 66 4374 18 27 78 6144 60 147 362 131072 28 478 1086 1179648 252 495 1122 1259712 828 558 1254 1572864 348 813 1794 3219264 828 822 1810 3276800 700 840 1846 3407872 156 900 1974 3898368 1692
Programs
-
Mathematica
s = Select[Range[6, 400], And[CompositeQ[#], SquareFreeQ[#]] &]; Reap[Do[(m = #^2 + 1; While[! Divisible[#, Times @@ FactorInteger[m][[All, 1]]], m++]; If[m - #^2 < #, Sow[#]]) &[s[[i]]], {i, Length[s]}] ][[-1, -1]]
-
PARI
rad(n) = factorback(factorint(n)[, 1]); \\ A007947 isok(m) = if (!isprime(m) && issquarefree(m), for (k=1+m^2, m+m^2, if (!(m % rad(k)), return(1)))); \\ Michel Marcus, Apr 21 2023
Comments